- -

Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xu, Guangfu es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Jia, Ming es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.date.accessioned 2021-06-10T03:32:04Z
dc.date.available 2021-06-10T03:32:04Z
dc.date.issued 2020-03-15 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167741
dc.description.abstract [EN] The diesel/gasoline dual-mode dual-fuel (DMDF) combustion concept was optimized in a compression-ignition engine by combining the computational fluid dynamics (CFD) simulations with the genetic algorithm. Seven operating parameters with remarkable influences on the engine performance were chosen as the variables to be optimized for simultaneously minimizing the fuel efficiency, nitrogen oxides (NOx), and soot emissions. Moreover, the potential of the further improvement of the DMDF combustion concept was discussed, and the rationality of this strategy was demonstrated. The results indicate that, at low load, simultaneous improvement of the fuel economy and emissions can be realized by strengthening the homogeneous combustion. At mid load, the fuel economy can be improved by reducing the heat transfer losses, while the NOx emissions are sacrificed to some extent. At high load, improved fuel economy can be realized by transferring a part of diffusion combustion to premixed reactivity-controlled compression ignition (RCCI) combustion. Concerning the operating parameters, lower intake temperature is beneficial to decrease the transfer losses, and the control of intake temperature is crucial for the stable operation of DMDF combustion under wide load conditions. Overall, gross indicated thermal efficiency above 45% is achieved, and the NOx and soot emission can be maintained under the Euro 6 standard for the test load range. es_ES
dc.description.sponsorship This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51961135105 and 91641117) and China Postdoctoral Science Foundation (Grant No. 2019M661094). The experimental results used in this investigation were obtained in a project funded by VOLVO Group Trucks Technology. The authors also acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R) and the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dual-mode dual-fuel (DMDF) es_ES
dc.subject Numerical simulation es_ES
dc.subject Genetic algorithm es_ES
dc.subject EURO VI emission standards es_ES
dc.subject Fuel efficiency es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2020.112577 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51961135105/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//91641117/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/China Postdoctoral Science Foundation//2019M661094/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Xu, G.; Monsalve-Serrano, J.; Jia, M.; García Martínez, A. (2020). Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads. Energy Conversion and Management. 208:1-13. https://doi.org/10.1016/j.enconman.2020.112577 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2020.112577 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 208 es_ES
dc.relation.pasarela S\402435 es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder China Postdoctoral Science Foundation es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Johnson TV. Diesel emission control in review. SAE Technical Paper. 2009; no. 2009-01-0121. es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Lim, J. H., & Reitz, R. D. (2014). High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection. Journal of Engineering for Gas Turbines and Power, 136(10). doi:10.1115/1.4027361 es_ES
dc.description.references Splitter, D. A., & Reitz, R. D. (2014). Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines. Fuel, 118, 163-175. doi:10.1016/j.fuel.2013.10.045 es_ES
dc.description.references Xu, Z., Jia, M., Li, Y., Chang, Y., Xu, G., Xu, L., & Lu, X. (2018). Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine. Fuel, 234, 120-134. doi:10.1016/j.fuel.2018.07.003 es_ES
dc.description.references D.F. Chuahy, F., & Kokjohn, S. L. (2017). Effects of the direct-injected fuel’s physical and chemical properties on dual-fuel combustion. Fuel, 207, 729-740. doi:10.1016/j.fuel.2017.06.039 es_ES
dc.description.references Murugesa Pandian, M., & Anand, K. (2018). Comparison of different low temperature combustion strategies in a light duty air cooled diesel engine. Applied Thermal Engineering, 142, 380-390. doi:10.1016/j.applthermaleng.2018.07.047 es_ES
dc.description.references Li, Y., Jia, M., Chang, Y., Kokjohn, S. L., & Reitz, R. D. (2016). Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy, 180, 849-858. doi:10.1016/j.apenergy.2016.08.038 es_ES
dc.description.references Gong, C., Li, Z., Yi, L., & Liu, F. (2019). Comparative study on combustion and emissions between methanol port-injection engine and methanol direct-injection engine with H2-enriched port-injection under lean-burn conditions. Energy Conversion and Management, 200, 112096. doi:10.1016/j.enconman.2019.112096 es_ES
dc.description.references Tong, L., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel, 181, 878-886. doi:10.1016/j.fuel.2016.05.037 es_ES
dc.description.references Agarwal, A. K., Singh, A. P., & Maurya, R. K. (2017). Evolution, challenges and path forward for low temperature combustion engines. Progress in Energy and Combustion Science, 61, 1-56. doi:10.1016/j.pecs.2017.02.001 es_ES
dc.description.references Dempsey, A. B., Walker, N. R., Gingrich, E., & Reitz, R. D. (2014). Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines with a Focus on Controllability. Combustion Science and Technology, 186(2), 210-241. doi:10.1080/00102202.2013.858137 es_ES
dc.description.references Wang, Y., Zhu, Z., Yao, M., Li, T., Zhang, W., & Zheng, Z. (2016). An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Conversion and Management, 124, 399-413. doi:10.1016/j.enconman.2016.07.026 es_ES
dc.description.references Dempsey AB, Reitz RD. Computational optimization of reactivity controlled compression ignition in a heavy-duty engine with ultra low compression ratio. SAE Technical Paper. 2011; no. 2011-24-0015. es_ES
dc.description.references Hanson R, Curran S, Wagner R, Kokjohn S, Splitter D, Reitz R. Piston bowl optimization for RCCI combustion in a light-duty multi-cylinder engine. SAE Technical Paper. 2012; no. 2012-01-0380. es_ES
dc.description.references Eichmeier, J., Wagner, U., & Spicher, U. (2012). Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection. Journal of Engineering for Gas Turbines and Power, 134(7). doi:10.1115/1.4005997 es_ES
dc.description.references Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035 es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137 es_ES
dc.description.references Amsden AA. KIVA-3V: A block structured KIVA program for engines with vertical and canted valves. USA: Los Alamos National Laboratory Technical Report; 1997. LA-13313-MS. es_ES
dc.description.references Wang, B.-L., Lee, C.-W., Reitz, R. D., Miles, P. C., & Han, Z. (2012). A generalized renormalization group turbulence model and its application to a light-duty diesel engine operating in a low-temperature combustion regime. International Journal of Engine Research, 14(3), 279-292. doi:10.1177/1468087412465379 es_ES
dc.description.references Zhang, Y., Jia, M., Liu, H., Xie, M., Wang, T., & Zhou, L. (2014). DEVELOPMENT OF A NEW SPRAY/WALL INTERACTION MODEL FOR DIESEL SPRAY UNDER PCCI-ENGINE RELEVANT CONDITIONS. Atomization and Sprays, 24(1), 41-80. doi:10.1615/atomizspr.2013008287 es_ES
dc.description.references Zhang, Y., Jia, M., Liu, H., & Xie, M. (2016). Development of an improved liquid film model for spray/wall interaction under engine-relevant conditions. International Journal of Multiphase Flow, 79, 74-87. doi:10.1016/j.ijmultiphaseflow.2015.10.002 es_ES
dc.description.references Yi, P., Long, W., Jia, M., Tian, J., & Li, B. (2016). Development of a quasi-dimensional vaporization model for multi-component fuels focusing on forced convection and high temperature conditions. International Journal of Heat and Mass Transfer, 97, 130-145. doi:10.1016/j.ijheatmasstransfer.2016.01.075 es_ES
dc.description.references Zhang, Y., Jia, M., Yi, P., Liu, H., & Xie, M. (2017). An efficient liquid film vaporization model for multi-component fuels considering thermal and mass diffusions. Applied Thermal Engineering, 112, 534-548. doi:10.1016/j.applthermaleng.2016.10.046 es_ES
dc.description.references Cao, J., Jia, M., Niu, B., Chang, Y., Xu, Z., & Liu, H. (2019). Establishment of an improved heat transfer model based on an enhanced thermal wall function for internal combustion engines operated under different combustion modes. Energy Conversion and Management, 195, 748-759. doi:10.1016/j.enconman.2019.05.046 es_ES
dc.description.references Ricart, L. M., Reltz, R. D., & Dec, J. E. (1999). Comparisons of Diesel Spray Liquid Penetration and Vapor Fuel Distributions With In-Cylinder Optical Measurements. Journal of Engineering for Gas Turbines and Power, 122(4), 588-595. doi:10.1115/1.1290591 es_ES
dc.description.references Kee RJ, Rupley FM, Meeks E, Miller JA. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas phase chemical and plasma kinetics. USA: Sandia National Laboratory Technical Report; 1996. SAND96-8216. es_ES
dc.description.references Chang, Y., Jia, M., Li, Y., & Xie, M. (2015). Application of the Optimized Decoupling Methodology for the Construction of a Skeletal Primary Reference Fuel Mechanism Focusing on Engine-Relevant Conditions. Frontiers in Mechanical Engineering, 1. doi:10.3389/fmech.2015.00011 es_ES
dc.description.references Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi:10.1016/j.fuel.2019.05.020 es_ES
dc.description.references Li, Y., Jia, M., Chang, Y., Xu, Z., Xu, G., Liu, H., & Wang, T. (2018). Principle of determining the optimal operating parameters based on fuel properties and initial conditions for RCCI engines. Fuel, 216, 284-295. doi:10.1016/j.fuel.2017.12.010 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069 es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 es_ES
dc.description.references Splitter D, Wissink M, Kokjohn S, Reitz RD. Effect of compression ratio and piston geometry on RCCI load limits and efficiency. SAE Technical Paper. 2012; no. 2012-01-0383. es_ES
dc.description.references Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040 es_ES
dc.description.references Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 es_ES
dc.description.references Kim M, Reitz RD, Kong SC. Modeling early injection processes in HSDI diesel engines. SAE Technical Paper. 2006; no. 2006-01-0056. es_ES
dc.description.references Xu, G., Jia, M., Li, Y., Chang, Y., & Wang, T. (2018). Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine. Energy Conversion and Management, 171, 683-698. doi:10.1016/j.enconman.2018.06.034 es_ES
dc.description.references Xu G, Jia M, Xu Z, Chang Y, Wang T. Numerical investigation of the potential of late intake valve closing (LIVC) coupled with double diesel direct-injection strategy for meeting high fuel efficiency with ultra-low emissions in a heavy-duty reactivity controlled compression ignition (RCCI) engine at high load. SAE Technical Paper. 2019; no. 2019-01-1166. es_ES
dc.description.references Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017 es_ES
dc.description.references Shi, Y., & Reitz, R. D. (2008). Optimization study of the effects of bowl geometry, spray targeting, and swirl ratio for a heavy-duty diesel engine operated at low and high load. International Journal of Engine Research, 9(4), 325-346. doi:10.1243/14680874jer00808 es_ES
dc.description.references Li, Y., Jia, M., Chang, Y., Liu, Y., Xie, M., Wang, T., & Zhou, L. (2014). Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel. Energy, 65, 319-332. doi:10.1016/j.energy.2013.11.059 es_ES
dc.description.references Nieman DE, Dempsey AB, Reitz RD. Heavy-duty RCCI operation using natural gas and diesel. SAE Technical Paper. 2012; no. 2012-01-0379. es_ES
dc.description.references Xu, G., Jia, M., Li, Y., Xie, M., & Su, W. (2017). Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion under a wide load range: (I) Computational method and optimization results. Energy, 126, 707-719. doi:10.1016/j.energy.2017.02.126 es_ES
dc.description.references Leermakers CAJ, Somers LMT, Johansson BH. Combustion phasing controllability with dual fuel injection timings. SAE Technical Paper. 2012; no. 2012-01-1575. es_ES
dc.description.references Gingrich E, Ghandhi J, Reitz RD. Experimental investigation of piston heat transfer in a light duty engine under conventional diesel, homogeneous charge compression ignition, and reactivity controlled compression ignition combustion regimes. SAE Technical Paper. 2014; no. 2014-01-1182. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem