Johnson TV. Diesel emission control in review. SAE Technical Paper. 2009; no. 2009-01-0121.
Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003
Lim, J. H., & Reitz, R. D. (2014). High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection. Journal of Engineering for Gas Turbines and Power, 136(10). doi:10.1115/1.4027361
[+]
Johnson TV. Diesel emission control in review. SAE Technical Paper. 2009; no. 2009-01-0121.
Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003
Lim, J. H., & Reitz, R. D. (2014). High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection. Journal of Engineering for Gas Turbines and Power, 136(10). doi:10.1115/1.4027361
Splitter, D. A., & Reitz, R. D. (2014). Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines. Fuel, 118, 163-175. doi:10.1016/j.fuel.2013.10.045
Xu, Z., Jia, M., Li, Y., Chang, Y., Xu, G., Xu, L., & Lu, X. (2018). Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine. Fuel, 234, 120-134. doi:10.1016/j.fuel.2018.07.003
D.F. Chuahy, F., & Kokjohn, S. L. (2017). Effects of the direct-injected fuel’s physical and chemical properties on dual-fuel combustion. Fuel, 207, 729-740. doi:10.1016/j.fuel.2017.06.039
Murugesa Pandian, M., & Anand, K. (2018). Comparison of different low temperature combustion strategies in a light duty air cooled diesel engine. Applied Thermal Engineering, 142, 380-390. doi:10.1016/j.applthermaleng.2018.07.047
Li, Y., Jia, M., Chang, Y., Kokjohn, S. L., & Reitz, R. D. (2016). Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy, 180, 849-858. doi:10.1016/j.apenergy.2016.08.038
Gong, C., Li, Z., Yi, L., & Liu, F. (2019). Comparative study on combustion and emissions between methanol port-injection engine and methanol direct-injection engine with H2-enriched port-injection under lean-burn conditions. Energy Conversion and Management, 200, 112096. doi:10.1016/j.enconman.2019.112096
Tong, L., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel, 181, 878-886. doi:10.1016/j.fuel.2016.05.037
Agarwal, A. K., Singh, A. P., & Maurya, R. K. (2017). Evolution, challenges and path forward for low temperature combustion engines. Progress in Energy and Combustion Science, 61, 1-56. doi:10.1016/j.pecs.2017.02.001
Dempsey, A. B., Walker, N. R., Gingrich, E., & Reitz, R. D. (2014). Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines with a Focus on Controllability. Combustion Science and Technology, 186(2), 210-241. doi:10.1080/00102202.2013.858137
Wang, Y., Zhu, Z., Yao, M., Li, T., Zhang, W., & Zheng, Z. (2016). An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Conversion and Management, 124, 399-413. doi:10.1016/j.enconman.2016.07.026
Dempsey AB, Reitz RD. Computational optimization of reactivity controlled compression ignition in a heavy-duty engine with ultra low compression ratio. SAE Technical Paper. 2011; no. 2011-24-0015.
Hanson R, Curran S, Wagner R, Kokjohn S, Splitter D, Reitz R. Piston bowl optimization for RCCI combustion in a light-duty multi-cylinder engine. SAE Technical Paper. 2012; no. 2012-01-0380.
Eichmeier, J., Wagner, U., & Spicher, U. (2012). Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection. Journal of Engineering for Gas Turbines and Power, 134(7). doi:10.1115/1.4005997
Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035
Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023
Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010
García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137
Amsden AA. KIVA-3V: A block structured KIVA program for engines with vertical and canted valves. USA: Los Alamos National Laboratory Technical Report; 1997. LA-13313-MS.
Wang, B.-L., Lee, C.-W., Reitz, R. D., Miles, P. C., & Han, Z. (2012). A generalized renormalization group turbulence model and its application to a light-duty diesel engine operating in a low-temperature combustion regime. International Journal of Engine Research, 14(3), 279-292. doi:10.1177/1468087412465379
Zhang, Y., Jia, M., Liu, H., Xie, M., Wang, T., & Zhou, L. (2014). DEVELOPMENT OF A NEW SPRAY/WALL INTERACTION MODEL FOR DIESEL SPRAY UNDER PCCI-ENGINE RELEVANT CONDITIONS. Atomization and Sprays, 24(1), 41-80. doi:10.1615/atomizspr.2013008287
Zhang, Y., Jia, M., Liu, H., & Xie, M. (2016). Development of an improved liquid film model for spray/wall interaction under engine-relevant conditions. International Journal of Multiphase Flow, 79, 74-87. doi:10.1016/j.ijmultiphaseflow.2015.10.002
Yi, P., Long, W., Jia, M., Tian, J., & Li, B. (2016). Development of a quasi-dimensional vaporization model for multi-component fuels focusing on forced convection and high temperature conditions. International Journal of Heat and Mass Transfer, 97, 130-145. doi:10.1016/j.ijheatmasstransfer.2016.01.075
Zhang, Y., Jia, M., Yi, P., Liu, H., & Xie, M. (2017). An efficient liquid film vaporization model for multi-component fuels considering thermal and mass diffusions. Applied Thermal Engineering, 112, 534-548. doi:10.1016/j.applthermaleng.2016.10.046
Cao, J., Jia, M., Niu, B., Chang, Y., Xu, Z., & Liu, H. (2019). Establishment of an improved heat transfer model based on an enhanced thermal wall function for internal combustion engines operated under different combustion modes. Energy Conversion and Management, 195, 748-759. doi:10.1016/j.enconman.2019.05.046
Ricart, L. M., Reltz, R. D., & Dec, J. E. (1999). Comparisons of Diesel Spray Liquid Penetration and Vapor Fuel Distributions With In-Cylinder Optical Measurements. Journal of Engineering for Gas Turbines and Power, 122(4), 588-595. doi:10.1115/1.1290591
Kee RJ, Rupley FM, Meeks E, Miller JA. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas phase chemical and plasma kinetics. USA: Sandia National Laboratory Technical Report; 1996. SAND96-8216.
Chang, Y., Jia, M., Li, Y., & Xie, M. (2015). Application of the Optimized Decoupling Methodology for the Construction of a Skeletal Primary Reference Fuel Mechanism Focusing on Engine-Relevant Conditions. Frontiers in Mechanical Engineering, 1. doi:10.3389/fmech.2015.00011
Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi:10.1016/j.fuel.2019.05.020
Li, Y., Jia, M., Chang, Y., Xu, Z., Xu, G., Liu, H., & Wang, T. (2018). Principle of determining the optimal operating parameters based on fuel properties and initial conditions for RCCI engines. Fuel, 216, 284-295. doi:10.1016/j.fuel.2017.12.010
García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069
Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064
Splitter D, Wissink M, Kokjohn S, Reitz RD. Effect of compression ratio and piston geometry on RCCI load limits and efficiency. SAE Technical Paper. 2012; no. 2012-01-0383.
Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040
Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082
Kim M, Reitz RD, Kong SC. Modeling early injection processes in HSDI diesel engines. SAE Technical Paper. 2006; no. 2006-01-0056.
Xu, G., Jia, M., Li, Y., Chang, Y., & Wang, T. (2018). Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine. Energy Conversion and Management, 171, 683-698. doi:10.1016/j.enconman.2018.06.034
Xu G, Jia M, Xu Z, Chang Y, Wang T. Numerical investigation of the potential of late intake valve closing (LIVC) coupled with double diesel direct-injection strategy for meeting high fuel efficiency with ultra-low emissions in a heavy-duty reactivity controlled compression ignition (RCCI) engine at high load. SAE Technical Paper. 2019; no. 2019-01-1166.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017
Shi, Y., & Reitz, R. D. (2008). Optimization study of the effects of bowl geometry, spray targeting, and swirl ratio for a heavy-duty diesel engine operated at low and high load. International Journal of Engine Research, 9(4), 325-346. doi:10.1243/14680874jer00808
Li, Y., Jia, M., Chang, Y., Liu, Y., Xie, M., Wang, T., & Zhou, L. (2014). Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel. Energy, 65, 319-332. doi:10.1016/j.energy.2013.11.059
Nieman DE, Dempsey AB, Reitz RD. Heavy-duty RCCI operation using natural gas and diesel. SAE Technical Paper. 2012; no. 2012-01-0379.
Xu, G., Jia, M., Li, Y., Xie, M., & Su, W. (2017). Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion under a wide load range: (I) Computational method and optimization results. Energy, 126, 707-719. doi:10.1016/j.energy.2017.02.126
Leermakers CAJ, Somers LMT, Johansson BH. Combustion phasing controllability with dual fuel injection timings. SAE Technical Paper. 2012; no. 2012-01-1575.
Gingrich E, Ghandhi J, Reitz RD. Experimental investigation of piston heat transfer in a light duty engine under conventional diesel, homogeneous charge compression ignition, and reactivity controlled compression ignition combustion regimes. SAE Technical Paper. 2014; no. 2014-01-1182.
[-]