- -

A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration

Mostrar el registro completo del ítem

Anderson-Alejandro Benites-Zelaya; Soler Cabezas, JL.; Ferrer-Polonio, E.; Mendoza Roca, JA.; Vincent Vela, MC. (2020). A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration. Water. 12(7):1-17. https://doi.org/10.3390/w12071975

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167861

Ficheros en el ítem

Metadatos del ítem

Título: A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration
Autor: Anderson-Alejandro Benites-Zelaya Soler Cabezas, José Luis Ferrer-Polonio, Eva Mendoza Roca, José Antonio Vincent Vela, Maria Cinta
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Nowadays, wastewater reuse in Mediterranean countries is necessary to cover the water demand. This contributes to the protection of the environment and encourages the circular economy. Due to increasingly strict ...[+]
Palabras clave: Secondary effluent , Tertiary treatment , Ultrafiltration , Artificial neural network , Organic matter fractionation
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12071975
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12071975
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F319/
Agradecimientos:
This study was funded by Generalitat Valenciana (Project AICO 18/319).
Tipo: Artículo

References

European Commission—Environmenthttps://ec.europa.eu/environment/water/reuse.htm

Rippey, S. R., & Watkins, W. D. (1992). Comparative Rates of Disinfection of Microbial Indicator Organisms in Chlorinated Sewage Effluents. Water Science and Technology, 26(9-11), 2185-2189. doi:10.2166/wst.1992.0693

Mounaouer, B., & Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. doi:10.1007/s11356-016-7173-4 [+]
European Commission—Environmenthttps://ec.europa.eu/environment/water/reuse.htm

Rippey, S. R., & Watkins, W. D. (1992). Comparative Rates of Disinfection of Microbial Indicator Organisms in Chlorinated Sewage Effluents. Water Science and Technology, 26(9-11), 2185-2189. doi:10.2166/wst.1992.0693

Mounaouer, B., & Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. doi:10.1007/s11356-016-7173-4

Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. doi:10.1016/j.watres.2005.10.030

Cervero-Aragó, S., Rodríguez-Martínez, S., Puertas-Bennasar, A., & Araujo, R. M. (2015). Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLOS ONE, 10(8), e0134726. doi:10.1371/journal.pone.0134726

Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 126, 450-459. doi:10.1016/j.watres.2017.09.056

Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. doi:10.1016/s0011-9164(98)00175-1

Lubello, C., Gori, R., de Bernardinis, A. M., & Simonelli, G. (2003). Ultrafiltration as tertiary treatment for industrial reuse. Water Supply, 3(4), 161-168. doi:10.2166/ws.2003.0058

Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157

Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011

Filloux, E., Labanowski, J., & Croue, J. P. (2012). Understanding the fouling of UF/MF hollow fibres of biologically treated wastewaters using advanced EfOM characterization and statistical tools. Bioresource Technology, 118, 460-468. doi:10.1016/j.biortech.2012.05.081

Shon, H. K., Vigneswaran, S., & Snyder, S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Critical Reviews in Environmental Science and Technology, 36(4), 327-374. doi:10.1080/10643380600580011

Wang, Z.-P., & Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Research, 44(18), 5499-5509. doi:10.1016/j.watres.2010.06.067

Ferrer-Polonio, E., White, K., Mendoza-Roca, J. A., & Bes-Piá, A. (2018). The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. Journal of Environmental Management, 228, 205-212. doi:10.1016/j.jenvman.2018.09.036

Ferrer-Polonio, E., Fernández-Navarro, J., Alonso-Molina, J. L., Bes-Piá, A., & Mendoza-Roca, J. A. (2018). Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration. Journal of Chemical Technology & Biotechnology, 93(11), 3284-3291. doi:10.1002/jctb.5689

Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15(5), 578-587. doi:10.1021/es00087a010

Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4

Zheng, X., Khan, M. T., & Croué, J.-P. (2014). Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Research, 65, 414-424. doi:10.1016/j.watres.2014.07.039

Ferrer-Polonio, E., McCabe, M., Mendoza-Roca, J. A., & Vincent-Vela, M.-C. (2018). Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step. Journal of Chemical Technology & Biotechnology, 93(5), 1495-1501. doi:10.1002/jctb.5520

Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural Network and Multiple Regression Models for PM10 Prediction in Athens: A Comparative Assessment. Journal of the Air & Waste Management Association, 53(10), 1183-1190. doi:10.1080/10473289.2003.10466276

Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2), 17-35. doi:10.1016/s0306-2619(00)00005-2

Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928. doi:10.1016/j.envsoft.2003.10.005

Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2006). Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278(1-2), 232-238. doi:10.1016/j.memsci.2005.11.006

Marhaba, T. F. (2000). Fluorescence Technique for Rapid Identification of DOM Fractions. Journal of Environmental Engineering, 126(2), 145-152. doi:10.1061/(asce)0733-9372(2000)126:2(145)

Teodosiu, C. (2000). Neural network models for ultrafiltration and backwashing. Water Research, 34(18), 4371-4380. doi:10.1016/s0043-1354(00)00217-7

Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., & Laîné, J. M. (2000). Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination, 131(1-3), 353-362. doi:10.1016/s0011-9164(00)90034-1

Vincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027

Zuriaga-Agustí, E., Bes-Piá, A., Mendoza-Roca, J. A., & Alonso-Molina, J. L. (2013). Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Separation and Purification Technology, 112, 1-10. doi:10.1016/j.seppur.2013.03.048

Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. doi:10.1016/0043-1354(95)00323-1

Juang, L.-C., Tseng, D.-H., Chen, Y.-M., Semblante, G. U., & You, S.-J. (2013). The effect soluble microbial products (SMP) on the quality and fouling potential of MBR effluent. Desalination, 326, 96-102. doi:10.1016/j.desal.2013.07.005

Ayache, C., Pidou, M., Croué, J. P., Labanowski, J., Poussade, Y., Tazi-Pain, A., … Gernjak, W. (2013). Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment. Water Research, 47(8), 2633-2642. doi:10.1016/j.watres.2013.01.043

Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6

Haberkamp, J., Ernst, M., Böckelmann, U., Szewzyk, U., & Jekel, M. (2008). Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Water Research, 42(12), 3153-3161. doi:10.1016/j.watres.2008.03.007

Yigit, N. O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N., & Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231(1-3), 124-132. doi:10.1016/j.desal.2007.11.041

Yammine, S., Rabagliato, R., Vitrac, X., Mietton Peuchot, M., & Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53(3). doi:10.20870/oeno-one.2019.53.3.2343

Babcock, J. J., & Brancaleon, L. (2013). Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. International Journal of Biological Macromolecules, 53, 42-53. doi:10.1016/j.ijbiomac.2012.10.030

Zirnsak, M. A., & Boger, D. V. (1998). Axisymmetric entry flow of semi-dilute xanthan gum solutions: prediction and experiment. Journal of Non-Newtonian Fluid Mechanics, 79(2-3), 105-136. doi:10.1016/s0377-0257(98)00104-9

Corbatón-Báguena, M.-J., Álvarez-Blanco, S., & Vincent-Vela, M.-C. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 360, 87-96. doi:10.1016/j.desal.2015.01.019

Maruyama, T., Katoh, S., Nakajima, M., & Nabetani, H. (2001). Mechanism of bovine serum albumin aggregation during ultrafiltration. Biotechnology and Bioengineering, 75(2), 233-238. doi:10.1002/bit.10001

Soler-Cabezas, J. L., Torà-Grau, M., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment, 56(13), 3427-3437. doi:10.1080/19443994.2014.969320

Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028

Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020

Saha, S., & Das, C. (2015). Analysis of Fouling Characteristics and Flux Decline during Humic Acids Batch Ultrafiltration. Journal of Chemical Engineering & Process Technology, 06(05). doi:10.4172/2157-7048.1000252

Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1-3), 390-398. doi:10.1016/j.jhazmat.2009.12.045

Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040

Pao, H.-T. (2008). A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Systems with Applications, 35(3), 720-727. doi:10.1016/j.eswa.2007.07.018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem