- -

Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate

Show full item record

Badenes Badenes, B.; Mateo Pla, MÁ.; Magraner Benedicto, MT.; Soriano Olivares, J.; Urchueguía Schölzel, JF. (2020). Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate. Energies. 13(18):1-30. https://doi.org/10.3390/en13184925

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167867

Files in this item

Item Metadata

Title: Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate
Author: Badenes Badenes, Borja Mateo Pla, Miguel Ángel MAGRANER BENEDICTO, MARÍA TERESA Soriano Olivares, Javier Urchueguía Schölzel, Javier Fermín
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] In ground-source heat-pump systems, the heat exchange rate is influenced by various design and operational parameters that condition the thermal performance of the heat pump and the running costs during exploitation. ...[+]
Subjects: Shallow geothermal energy , Borehole Heat Exchangers (BHE) , Optimization assessment , Thermal Response Test (TRT) , Pressure losses , Hydraulic assessment , Cost saving , EED
Copyrigths: Reconocimiento (by)
Source:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en13184925
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/en13184925
Project ID:
info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/
info:eu-repo/grantAgreement/EC/H2020/792355/EU/Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings/
Thanks:
This research work has been supported financially by the European project GEOCOND (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 727583) and by the European project ...[+]
Type: Artículo

References

Sáez Blázquez, C., Piedelobo, L., Fernández-Hernández, J., Nieto, I. M., Martín, A. F., Lagüela, S., & González-Aguilera, D. (2020). Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger. Energies, 13(5), 1270. doi:10.3390/en13051270

Bae, S. M., Nam, Y., & Shim, B. O. (2018). Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties. Energies, 11(7), 1786. doi:10.3390/en11071786

Bilić, T., Raos, S., Ilak, P., Rajšl, I., & Pašičko, R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), 1026. doi:10.3390/en13051026 [+]
Sáez Blázquez, C., Piedelobo, L., Fernández-Hernández, J., Nieto, I. M., Martín, A. F., Lagüela, S., & González-Aguilera, D. (2020). Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger. Energies, 13(5), 1270. doi:10.3390/en13051270

Bae, S. M., Nam, Y., & Shim, B. O. (2018). Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties. Energies, 11(7), 1786. doi:10.3390/en11071786

Bilić, T., Raos, S., Ilak, P., Rajšl, I., & Pašičko, R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), 1026. doi:10.3390/en13051026

Lamarche, L., Raymond, J., & Koubikana Pambou, C. (2017). Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design. Energies, 11(1), 38. doi:10.3390/en11010038

Vella, C., Borg, S. P., & Micallef, D. (2020). The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers. Energies, 13(3), 602. doi:10.3390/en13030602

Javed, S., & Spitler, J. D. (2016). Calculation of borehole thermal resistance. Advances in Ground-Source Heat Pump Systems, 63-95. doi:10.1016/b978-0-08-100311-4.00003-0

Serageldin, A. A., Sakata, Y., Katsura, T., & Nagano, K. (2018). Thermo-hydraulic performance of the U-tube borehole heat exchanger with a novel oval cross-section: Numerical approach. Energy Conversion and Management, 177, 406-415. doi:10.1016/j.enconman.2018.09.081

Hou, G., Taherian, H., Li, L., Fuse, J., & Moradi, L. (2020). System performance analysis of a hybrid ground source heat pump with optimal control strategies based on numerical simulations. Geothermics, 86, 101849. doi:10.1016/j.geothermics.2020.101849

Li, M., & Lai, A. C. K. (2013). Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method. Energy Conversion and Management, 65, 133-139. doi:10.1016/j.enconman.2012.07.013

De Carli, M., Galgaro, A., Pasqualetto, M., & Zarrella, A. (2014). Energetic and economic aspects of a heating and cooling district in a mild climate based on closed loop ground source heat pump. Applied Thermal Engineering, 71(2), 895-904. doi:10.1016/j.applthermaleng.2014.01.064

Lu, Q., Narsilio, G. A., Aditya, G. R., & Johnston, I. W. (2017). Economic analysis of vertical ground source heat pump systems in Melbourne. Energy, 125, 107-117. doi:10.1016/j.energy.2017.02.082

Nguyen, H. V., Law, Y. L. E., Alavy, M., Walsh, P. R., Leong, W. H., & Dworkin, S. B. (2014). An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America. Applied Energy, 125, 28-38. doi:10.1016/j.apenergy.2014.03.044

Garber, D., Choudhary, R., & Soga, K. (2013). Risk based lifetime costs assessment of a ground source heat pump (GSHP) system design: Methodology and case study. Building and Environment, 60, 66-80. doi:10.1016/j.buildenv.2012.11.011

Yoon, S., Lee, S.-R., Xue, J., Zosseder, K., Go, G.-H., & Park, H. (2015). Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles. Energy Conversion and Management, 105, 393-402. doi:10.1016/j.enconman.2015.08.002

Emmi, G., Zarrella, A., De Carli, M., Donà, M., & Galgaro, A. (2017). Energy performance and cost analysis of some borehole heat exchanger configurations with different heat-carrier fluids in mild climates. Geothermics, 65, 158-169. doi:10.1016/j.geothermics.2016.09.006

Spitler, J. D., & Gehlin, S. E. A. (2015). Thermal response testing for ground source heat pump systems—An historical review. Renewable and Sustainable Energy Reviews, 50, 1125-1137. doi:10.1016/j.rser.2015.05.061

Bandos, T. V., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., … Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270. doi:10.1016/j.geothermics.2009.01.003

Diao, N., Cui, P., & Fang, Z. (2002). The thermal resistance in a borehole of geothermal heat exchangers. Proceeding of International Heat Transfer Conference 12. doi:10.1615/ihtc12.3050

H. Tarrad, A. (2019). A Borehole Thermal Resistance Correlation for a Single Vertical DX U-Tube in Geothermal Energy Application. American Journal of Environmental Science and Engineering, 3(4), 75. doi:10.11648/j.ajese.20190304.12

Ould-Rouiss, M., Redjem-Saad, L., & Lauriat, G. (2009). Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio. International Journal of Heat and Fluid Flow, 30(4), 579-589. doi:10.1016/j.ijheatfluidflow.2009.02.018

Lundberg, R. E., McCuen, P. A., & Reynolds, W. C. (1963). Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes. International Journal of Heat and Mass Transfer, 6(6), 495-529. doi:10.1016/0017-9310(63)90124-8

Badenes, B., Mateo Pla, M., Lemus-Zúñiga, L., Sáiz Mauleón, B., & Urchueguía, J. (2017). On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers. Energies, 10(9), 1328. doi:10.3390/en10091328

Urchueguía, J., Lemus-Zúñiga, L.-G., Oliver-Villanueva, J.-V., Badenes, B., Pla, M., & Cuevas, J. (2018). How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions. Energies, 11(12), 3347. doi:10.3390/en11123347

Código Técnico de la Edificación de España https://www.codigotecnico.org/

EED—Earth Energy Designer, v4 https://buildingphysics.com/eed-2/

GMSW 28 HK https://www.ochsner.com/en/ochsner-products/product-detail/gmsw-28-hk/

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record