- -

Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Badenes Badenes, Borja es_ES
dc.contributor.author Mateo Pla, Miguel Ángel es_ES
dc.contributor.author MAGRANER BENEDICTO, MARÍA TERESA es_ES
dc.contributor.author Soriano Olivares, Javier es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2021-06-12T03:33:47Z
dc.date.available 2021-06-12T03:33:47Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167867
dc.description.abstract [EN] In ground-source heat-pump systems, the heat exchange rate is influenced by various design and operational parameters that condition the thermal performance of the heat pump and the running costs during exploitation. One less-studied area is the relationship between the pumping costs in a given system and the heat exchange rate. This work analyzes the investment and operating costs of representative borehole heat-exchanger configurations with varying circulating flow rate by means of a combination of analytical formulas and case study simulations to allow a precise quantification of the capital and operational costs in typical scenario. As a conclusion, an optimal flow rate minimizing either of both costs can be determined. Furthermore, it is concluded that in terms of operating costs, there is an operational pumping rate above which performance of geothermal systems is energetically strongly penalized. es_ES
dc.description.sponsorship This research work has been supported financially by the European project GEOCOND (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 727583) and by the European project GEO4CIVHIC (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 792355). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Shallow geothermal energy es_ES
dc.subject Borehole Heat Exchangers (BHE) es_ES
dc.subject Optimization assessment es_ES
dc.subject Thermal Response Test (TRT) es_ES
dc.subject Pressure losses es_ES
dc.subject Hydraulic assessment es_ES
dc.subject Cost saving es_ES
dc.subject EED es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13184925 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/792355/EU/Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Badenes Badenes, B.; Mateo Pla, MÁ.; Magraner Benedicto, MT.; Soriano Olivares, J.; Urchueguía Schölzel, JF. (2020). Theoretical and experimental cost-benefit assessment of borehole heat exchangers (BHEs) according to working fluid flow rate. Energies. 13(18):1-30. https://doi.org/10.3390/en13184925 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13184925 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\418102 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Sáez Blázquez, C., Piedelobo, L., Fernández-Hernández, J., Nieto, I. M., Martín, A. F., Lagüela, S., & González-Aguilera, D. (2020). Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger. Energies, 13(5), 1270. doi:10.3390/en13051270 es_ES
dc.description.references Bae, S. M., Nam, Y., & Shim, B. O. (2018). Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties. Energies, 11(7), 1786. doi:10.3390/en11071786 es_ES
dc.description.references Bilić, T., Raos, S., Ilak, P., Rajšl, I., & Pašičko, R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), 1026. doi:10.3390/en13051026 es_ES
dc.description.references Lamarche, L., Raymond, J., & Koubikana Pambou, C. (2017). Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design. Energies, 11(1), 38. doi:10.3390/en11010038 es_ES
dc.description.references Vella, C., Borg, S. P., & Micallef, D. (2020). The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers. Energies, 13(3), 602. doi:10.3390/en13030602 es_ES
dc.description.references Javed, S., & Spitler, J. D. (2016). Calculation of borehole thermal resistance. Advances in Ground-Source Heat Pump Systems, 63-95. doi:10.1016/b978-0-08-100311-4.00003-0 es_ES
dc.description.references Serageldin, A. A., Sakata, Y., Katsura, T., & Nagano, K. (2018). Thermo-hydraulic performance of the U-tube borehole heat exchanger with a novel oval cross-section: Numerical approach. Energy Conversion and Management, 177, 406-415. doi:10.1016/j.enconman.2018.09.081 es_ES
dc.description.references Hou, G., Taherian, H., Li, L., Fuse, J., & Moradi, L. (2020). System performance analysis of a hybrid ground source heat pump with optimal control strategies based on numerical simulations. Geothermics, 86, 101849. doi:10.1016/j.geothermics.2020.101849 es_ES
dc.description.references Li, M., & Lai, A. C. K. (2013). Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method. Energy Conversion and Management, 65, 133-139. doi:10.1016/j.enconman.2012.07.013 es_ES
dc.description.references De Carli, M., Galgaro, A., Pasqualetto, M., & Zarrella, A. (2014). Energetic and economic aspects of a heating and cooling district in a mild climate based on closed loop ground source heat pump. Applied Thermal Engineering, 71(2), 895-904. doi:10.1016/j.applthermaleng.2014.01.064 es_ES
dc.description.references Lu, Q., Narsilio, G. A., Aditya, G. R., & Johnston, I. W. (2017). Economic analysis of vertical ground source heat pump systems in Melbourne. Energy, 125, 107-117. doi:10.1016/j.energy.2017.02.082 es_ES
dc.description.references Nguyen, H. V., Law, Y. L. E., Alavy, M., Walsh, P. R., Leong, W. H., & Dworkin, S. B. (2014). An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America. Applied Energy, 125, 28-38. doi:10.1016/j.apenergy.2014.03.044 es_ES
dc.description.references Garber, D., Choudhary, R., & Soga, K. (2013). Risk based lifetime costs assessment of a ground source heat pump (GSHP) system design: Methodology and case study. Building and Environment, 60, 66-80. doi:10.1016/j.buildenv.2012.11.011 es_ES
dc.description.references Yoon, S., Lee, S.-R., Xue, J., Zosseder, K., Go, G.-H., & Park, H. (2015). Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles. Energy Conversion and Management, 105, 393-402. doi:10.1016/j.enconman.2015.08.002 es_ES
dc.description.references Emmi, G., Zarrella, A., De Carli, M., Donà, M., & Galgaro, A. (2017). Energy performance and cost analysis of some borehole heat exchanger configurations with different heat-carrier fluids in mild climates. Geothermics, 65, 158-169. doi:10.1016/j.geothermics.2016.09.006 es_ES
dc.description.references Spitler, J. D., & Gehlin, S. E. A. (2015). Thermal response testing for ground source heat pump systems—An historical review. Renewable and Sustainable Energy Reviews, 50, 1125-1137. doi:10.1016/j.rser.2015.05.061 es_ES
dc.description.references Bandos, T. V., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., … Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270. doi:10.1016/j.geothermics.2009.01.003 es_ES
dc.description.references Diao, N., Cui, P., & Fang, Z. (2002). The thermal resistance in a borehole of geothermal heat exchangers. Proceeding of International Heat Transfer Conference 12. doi:10.1615/ihtc12.3050 es_ES
dc.description.references H. Tarrad, A. (2019). A Borehole Thermal Resistance Correlation for a Single Vertical DX U-Tube in Geothermal Energy Application. American Journal of Environmental Science and Engineering, 3(4), 75. doi:10.11648/j.ajese.20190304.12 es_ES
dc.description.references Ould-Rouiss, M., Redjem-Saad, L., & Lauriat, G. (2009). Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio. International Journal of Heat and Fluid Flow, 30(4), 579-589. doi:10.1016/j.ijheatfluidflow.2009.02.018 es_ES
dc.description.references Lundberg, R. E., McCuen, P. A., & Reynolds, W. C. (1963). Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes. International Journal of Heat and Mass Transfer, 6(6), 495-529. doi:10.1016/0017-9310(63)90124-8 es_ES
dc.description.references Badenes, B., Mateo Pla, M., Lemus-Zúñiga, L., Sáiz Mauleón, B., & Urchueguía, J. (2017). On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers. Energies, 10(9), 1328. doi:10.3390/en10091328 es_ES
dc.description.references Urchueguía, J., Lemus-Zúñiga, L.-G., Oliver-Villanueva, J.-V., Badenes, B., Pla, M., & Cuevas, J. (2018). How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions. Energies, 11(12), 3347. doi:10.3390/en11123347 es_ES
dc.description.references Código Técnico de la Edificación de España https://www.codigotecnico.org/ es_ES
dc.description.references EED—Earth Energy Designer, v4 https://buildingphysics.com/eed-2/ es_ES
dc.description.references GMSW 28 HK https://www.ochsner.com/en/ochsner-products/product-detail/gmsw-28-hk/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem