- -

Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Mayorga, Cristobalina es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Vayá Pérez, Ignacio es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2021-06-15T03:31:22Z
dc.date.available 2021-06-15T03:31:22Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167977
dc.description.abstract [EN] Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and alpha(1)-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments. es_ES
dc.description.sponsorship Financial support from the Spanish Government (RYC-201517737, CTQ2017-89416-R, SAF2016-75638-R ISCIII grants RETICS ARADyAL (RD16/0006/0004 and RD16/0006/0001), PI16/01877 and CPII16/00052), Conselleria d'Educacio Cultura i Esport (PROMETEO/2017/075), the Xunta de Galicia [ED431B 2018/04 and Centro singular de investigacion de Galicia accreditation 2019-2022 (ED431G 2019/03)] and the European Regional Development Fund is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Pharmacology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Femtosecond transient absorption es_ES
dc.subject Fluorescence es_ES
dc.subject Hypersensitivity reactions es_ES
dc.subject Lapatinib es_ES
dc.subject Metabolites es_ES
dc.subject Molecular dynamics simulations es_ES
dc.subject Protein binding es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphar.2020.576495 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CPII16%2F00052/ES/CPII16%2F00052/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17737/ES/RYC-2015-17737/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G 2019%2F03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0004/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0001/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Andreu Ros, MI.; Lence, E.; González-Bello, C.; Mayorga, C.; Cuquerella Alabort, MC.; Vayá Pérez, I.; Miranda Alonso, MÁ. (2020). Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations. Frontiers in Pharmacology. 11:1-11. https://doi.org/10.3389/fphar.2020.576495 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphar.2020.576495 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1663-9812 es_ES
dc.identifier.pmid 33192518 es_ES
dc.identifier.pmcid PMC7662899 es_ES
dc.relation.pasarela S\422607 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ahmed, S. S., Whritenour, J., Ahmed, M. M., Bibby, L., Darby, L., Wang, X. N., … Dickinson, A. M. (2019). Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicology and Applied Pharmacology, 369, 39-48. doi:10.1016/j.taap.2019.02.005 es_ES
dc.description.references Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy & Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c es_ES
dc.description.references Blakely, K. M., Drucker, A. M., & Rosen, C. F. (2019). Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Safety, 42(7), 827-847. doi:10.1007/s40264-019-00806-5 es_ES
dc.description.references Bteich, M. (2019). An overview of albumin and alpha-1-acid glycoprotein main characteristics: highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon, 5(11), e02879. doi:10.1016/j.heliyon.2019.e02879 es_ES
dc.description.references Cosa, G. (2004). Photodegradation and photosensitization in pharmaceutical products: Assessing drug phototoxicity. Pure and Applied Chemistry, 76(2), 263-275. doi:10.1351/pac200476020263 es_ES
dc.description.references Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869 es_ES
dc.description.references Friedman, M. D., Lacouture, M., & Dang, C. (2016). Dermatologic Adverse Events Associated With Use of Adjuvant Lapatinib in Combination With Paclitaxel and Trastuzumab for HER2-Positive Breast Cancer: A Case Series Analysis. Clinical Breast Cancer, 16(3), e69-e74. doi:10.1016/j.clbc.2015.11.001 es_ES
dc.description.references García-Lainez, G., Vayá, I., Marín, M. P., Miranda, M. A., & Andreu, I. (2020). In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Archives of Toxicology, 95(1), 169-178. doi:10.1007/s00204-020-02880-6 es_ES
dc.description.references Gonzalez, G., & Lage, A. (2007). Cancer Vaccines for Hormone/Growth Factor Immune Deprivation:A Feasible Approach for Cancer Treatment. Current Cancer Drug Targets, 7(3), 229-241. doi:10.2174/156800907780618310 es_ES
dc.description.references Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542-1555. doi:10.1021/ct200909j es_ES
dc.description.references Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5(5), 341-354. doi:10.1038/nrc1609 es_ES
dc.description.references Ishikawa, T., Kamide, R., & Niimura, M. (1994). Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. The Journal of Dermatology, 21(6), 430-433. doi:10.1111/j.1346-8138.1994.tb01768.x es_ES
dc.description.references Johnston, S. R. D., Hegg, R., Im, S.-A., Park, I. H., Burdaeva, O., Kurteva, G., … Gradishar, W. J. (2018). Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor–Positive Metastatic Breast Cancer: ALTERNATIVE. Journal of Clinical Oncology, 36(8), 741-748. doi:10.1200/jco.2017.74.7824 es_ES
dc.description.references Kabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 160, 229-239. doi:10.1016/j.jphotobiol.2016.04.005 es_ES
dc.description.references Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053 es_ES
dc.description.references Krasner, J. (1972). Drug-Protein Interaction. Pediatric Clinics of North America, 19(1), 51-63. doi:10.1016/s0031-3955(16)32666-9 es_ES
dc.description.references Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022 es_ES
dc.description.references Limones-Herrero, D., Palumbo, F., Vendrell-Criado, V., Andreu, I., Lence, E., González-Bello, C., … Jiménez, M. C. (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117652. doi:10.1016/j.saa.2019.117652 es_ES
dc.description.references Limones-Herrero, D., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science, 8(4), 2621-2628. doi:10.1039/c6sc04900a es_ES
dc.description.references Lin, N. U., Carey, L. A., Liu, M. C., Younger, J., Come, S. E., Ewend, M., … Winer, E. P. (2008). Phase II Trial of Lapatinib for Brain Metastases in Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Journal of Clinical Oncology, 26(12), 1993-1999. doi:10.1200/jco.2007.12.3588 es_ES
dc.description.references Lin, N. U., Diéras, V., Paul, D., Lossignol, D., Christodoulou, C., Stemmler, H.-J., … Winer, E. P. (2009). Multicenter Phase II Study of Lapatinib in Patients with Brain Metastases from HER2-Positive Breast Cancer. Clinical Cancer Research, 15(4), 1452-1459. doi:10.1158/1078-0432.ccr-08-1080 es_ES
dc.description.references MEDINA, P., & GOODIN, S. (2008). Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clinical Therapeutics, 30(8), 1426-1447. doi:10.1016/j.clinthera.2008.08.008 es_ES
dc.description.references Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h es_ES
dc.description.references Miranda, M. A., Boscaa, F., Vargas, F., & Canudas, N. (1994). PHOTOSENSITIZATION BY FENOFIBRATE. II. In vitro PHOTOTOXICITY OF THE MAJOR METABOLITES. Photochemistry and Photobiology, 59(2), 171-174. doi:10.1111/j.1751-1097.1994.tb05018.x es_ES
dc.description.references Molins-Molina, O., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01028 es_ES
dc.description.references Montanaro, S., Lhiaubet-Vallet, V., Iesce, M., Previtera, L., & Miranda, M. A. (2008). A Mechanistic Study on the Phototoxicity of Atorvastatin: Singlet Oxygen Generation by a Phenanthrene-like Photoproduct. Chemical Research in Toxicology, 22(1), 173-178. doi:10.1021/tx800294z es_ES
dc.description.references Nicholson, R. ., Gee, J. M. ., & Harper, M. . (2001). EGFR and cancer prognosis. European Journal of Cancer, 37, 9-15. doi:10.1016/s0959-8049(01)00231-3 es_ES
dc.description.references Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 es_ES
dc.description.references Pérez-Ruíz, R., Lence, E., Andreu, I., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643 es_ES
dc.description.references Peters, T. (1995). Ligand Binding by Albumin. All About Albumin, 76-132. doi:10.1016/b978-012552110-9/50005-2 es_ES
dc.description.references Pinheiro, S., & Curutchet, C. (2017). Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein–Ligand Complex? The Journal of Physical Chemistry B, 121(10), 2265-2278. doi:10.1021/acs.jpcb.7b00217 es_ES
dc.description.references Ross, J. S., Gay, L. M., Wang, K., Ali, S. M., Chumsri, S., Elvin, J. A., … Stephens, P. J. (2016). NonamplificationERBB2genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti-HER2 targeted therapies. Cancer, 122(17), 2654-2662. doi:10.1002/cncr.30102 es_ES
dc.description.references Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878-3888. doi:10.1021/ct400314y es_ES
dc.description.references Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020 es_ES
dc.description.references Schroeder, R., Stevens, C., & Sridhar, J. (2014). Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules, 19(9), 15196-15212. doi:10.3390/molecules190915196 es_ES
dc.description.references Sekula, B., Zielinski, K., & Bujacz, A. (2013). Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. International Journal of Biological Macromolecules, 60, 316-324. doi:10.1016/j.ijbiomac.2013.06.004 es_ES
dc.description.references Shen, G.-F., Liu, T.-T., Wang, Q., Jiang, M., & Shi, J.-H. (2015). Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 153, 380-390. doi:10.1016/j.jphotobiol.2015.10.023 es_ES
dc.description.references Sigismund, S., Avanzato, D., & Lanzetti, L. (2017). Emerging functions of the EGFR in cancer. Molecular Oncology, 12(1), 3-20. doi:10.1002/1878-0261.12155 es_ES
dc.description.references Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., … Bacus, S. (2005). Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. Journal of Clinical Oncology, 23(11), 2502-2512. doi:10.1200/jco.2005.12.157 es_ES
dc.description.references Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 9. doi:10.3389/fonc.2019.00800 es_ES
dc.description.references Towles, J. K., Clark, R. N., Wahlin, M. D., Uttamsingh, V., Rettie, A. E., & Jackson, K. D. (2016). Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib. Drug Metabolism and Disposition, 44(10), 1584-1597. doi:10.1124/dmd.116.070839 es_ES
dc.description.references Vargas, F., Canudas, N., Miranda, M. A., & Boscar, F. (1993). PHOTODEGRADATION AND in vitro PHOTOTOXICITY OF FENOFIBRATE, A PHOTOSENSITIZING ANTI-HYPEIUIPOPROTEINEMIC DRUG. Photochemistry and Photobiology, 58(4), 471-476. doi:10.1111/j.1751-1097.1993.tb04917.x es_ES
dc.description.references Vayá, I., Andreu, I., Lence, E., González‐Bello, C., Consuelo Cuquerella, M., Navarrete‐Miguel, M., … Miranda, M. A. (2020). Characterization of Locally Excited and Charge‐Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry – A European Journal, 26(68), 15922-15930. doi:10.1002/chem.202001336 es_ES
dc.description.references Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357 es_ES
dc.description.references Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f es_ES
dc.description.references Wilson, J. N., Liu, W., Brown, A. S., & Landgraf, R. (2015). Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Organic & Biomolecular Chemistry, 13(17), 5006-5011. doi:10.1039/c5ob00239g es_ES
dc.description.references Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem