- -

Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations

Mostrar el registro completo del ítem

Andreu Ros, MI.; Lence, E.; González-Bello, C.; Mayorga, C.; Cuquerella Alabort, MC.; Vayá Pérez, I.; Miranda Alonso, MÁ. (2020). Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations. Frontiers in Pharmacology. 11:1-11. https://doi.org/10.3389/fphar.2020.576495

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167977

Ficheros en el ítem

Metadatos del ítem

Título: Protein binding of lapatinib and its N- and O-dealkylated metabolites interrogated by fluorescence, ultrafast spectroscopy and molecular dynamics simulations
Autor: Andreu Ros, María Inmaculada Lence, Emilio González-Bello, Concepción Mayorga, Cristobalina Cuquerella Alabort, Maria Consuelo Vayá Pérez, Ignacio Miranda Alonso, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to ...[+]
Palabras clave: Femtosecond transient absorption , Fluorescence , Hypersensitivity reactions , Lapatinib , Metabolites , Molecular dynamics simulations , Protein binding
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Pharmacology. (eissn: 1663-9812 )
DOI: 10.3389/fphar.2020.576495
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphar.2020.576495
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/
...[+]
info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/
info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/
info:eu-repo/grantAgreement/MINECO//CPII16%2F00052/ES/CPII16%2F00052/
info:eu-repo/grantAgreement/MINECO//RYC-2015-17737/ES/RYC-2015-17737/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/
info:eu-repo/grantAgreement/Xunta de Galicia//ED431G 2019%2F03/
info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0004/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/
info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0001/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/
info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
[-]
Agradecimientos:
Financial support from the Spanish Government (RYC-201517737, CTQ2017-89416-R, SAF2016-75638-R ISCIII grants RETICS ARADyAL (RD16/0006/0004 and RD16/0006/0001), PI16/01877 and CPII16/00052), Conselleria d'Educacio Cultura ...[+]
Tipo: Artículo

References

Ahmed, S. S., Whritenour, J., Ahmed, M. M., Bibby, L., Darby, L., Wang, X. N., … Dickinson, A. M. (2019). Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicology and Applied Pharmacology, 369, 39-48. doi:10.1016/j.taap.2019.02.005

Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy & Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c

Blakely, K. M., Drucker, A. M., & Rosen, C. F. (2019). Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Safety, 42(7), 827-847. doi:10.1007/s40264-019-00806-5 [+]
Ahmed, S. S., Whritenour, J., Ahmed, M. M., Bibby, L., Darby, L., Wang, X. N., … Dickinson, A. M. (2019). Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicology and Applied Pharmacology, 369, 39-48. doi:10.1016/j.taap.2019.02.005

Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy & Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c

Blakely, K. M., Drucker, A. M., & Rosen, C. F. (2019). Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Safety, 42(7), 827-847. doi:10.1007/s40264-019-00806-5

Bteich, M. (2019). An overview of albumin and alpha-1-acid glycoprotein main characteristics: highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon, 5(11), e02879. doi:10.1016/j.heliyon.2019.e02879

Cosa, G. (2004). Photodegradation and photosensitization in pharmaceutical products: Assessing drug phototoxicity. Pure and Applied Chemistry, 76(2), 263-275. doi:10.1351/pac200476020263

Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869

Friedman, M. D., Lacouture, M., & Dang, C. (2016). Dermatologic Adverse Events Associated With Use of Adjuvant Lapatinib in Combination With Paclitaxel and Trastuzumab for HER2-Positive Breast Cancer: A Case Series Analysis. Clinical Breast Cancer, 16(3), e69-e74. doi:10.1016/j.clbc.2015.11.001

García-Lainez, G., Vayá, I., Marín, M. P., Miranda, M. A., & Andreu, I. (2020). In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Archives of Toxicology, 95(1), 169-178. doi:10.1007/s00204-020-02880-6

Gonzalez, G., & Lage, A. (2007). Cancer Vaccines for Hormone/Growth Factor Immune Deprivation:A Feasible Approach for Cancer Treatment. Current Cancer Drug Targets, 7(3), 229-241. doi:10.2174/156800907780618310

Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542-1555. doi:10.1021/ct200909j

Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5(5), 341-354. doi:10.1038/nrc1609

Ishikawa, T., Kamide, R., & Niimura, M. (1994). Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. The Journal of Dermatology, 21(6), 430-433. doi:10.1111/j.1346-8138.1994.tb01768.x

Johnston, S. R. D., Hegg, R., Im, S.-A., Park, I. H., Burdaeva, O., Kurteva, G., … Gradishar, W. J. (2018). Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor–Positive Metastatic Breast Cancer: ALTERNATIVE. Journal of Clinical Oncology, 36(8), 741-748. doi:10.1200/jco.2017.74.7824

Kabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 160, 229-239. doi:10.1016/j.jphotobiol.2016.04.005

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053

Krasner, J. (1972). Drug-Protein Interaction. Pediatric Clinics of North America, 19(1), 51-63. doi:10.1016/s0031-3955(16)32666-9

Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022

Limones-Herrero, D., Palumbo, F., Vendrell-Criado, V., Andreu, I., Lence, E., González-Bello, C., … Jiménez, M. C. (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117652. doi:10.1016/j.saa.2019.117652

Limones-Herrero, D., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science, 8(4), 2621-2628. doi:10.1039/c6sc04900a

Lin, N. U., Carey, L. A., Liu, M. C., Younger, J., Come, S. E., Ewend, M., … Winer, E. P. (2008). Phase II Trial of Lapatinib for Brain Metastases in Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Journal of Clinical Oncology, 26(12), 1993-1999. doi:10.1200/jco.2007.12.3588

Lin, N. U., Diéras, V., Paul, D., Lossignol, D., Christodoulou, C., Stemmler, H.-J., … Winer, E. P. (2009). Multicenter Phase II Study of Lapatinib in Patients with Brain Metastases from HER2-Positive Breast Cancer. Clinical Cancer Research, 15(4), 1452-1459. doi:10.1158/1078-0432.ccr-08-1080

MEDINA, P., & GOODIN, S. (2008). Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clinical Therapeutics, 30(8), 1426-1447. doi:10.1016/j.clinthera.2008.08.008

Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h

Miranda, M. A., Boscaa, F., Vargas, F., & Canudas, N. (1994). PHOTOSENSITIZATION BY FENOFIBRATE. II. In vitro PHOTOTOXICITY OF THE MAJOR METABOLITES. Photochemistry and Photobiology, 59(2), 171-174. doi:10.1111/j.1751-1097.1994.tb05018.x

Molins-Molina, O., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01028

Montanaro, S., Lhiaubet-Vallet, V., Iesce, M., Previtera, L., & Miranda, M. A. (2008). A Mechanistic Study on the Phototoxicity of Atorvastatin: Singlet Oxygen Generation by a Phenanthrene-like Photoproduct. Chemical Research in Toxicology, 22(1), 173-178. doi:10.1021/tx800294z

Nicholson, R. ., Gee, J. M. ., & Harper, M. . (2001). EGFR and cancer prognosis. European Journal of Cancer, 37, 9-15. doi:10.1016/s0959-8049(01)00231-3

Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277

Pérez-Ruíz, R., Lence, E., Andreu, I., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643

Peters, T. (1995). Ligand Binding by Albumin. All About Albumin, 76-132. doi:10.1016/b978-012552110-9/50005-2

Pinheiro, S., & Curutchet, C. (2017). Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein–Ligand Complex? The Journal of Physical Chemistry B, 121(10), 2265-2278. doi:10.1021/acs.jpcb.7b00217

Ross, J. S., Gay, L. M., Wang, K., Ali, S. M., Chumsri, S., Elvin, J. A., … Stephens, P. J. (2016). NonamplificationERBB2genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti-HER2 targeted therapies. Cancer, 122(17), 2654-2662. doi:10.1002/cncr.30102

Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878-3888. doi:10.1021/ct400314y

Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020

Schroeder, R., Stevens, C., & Sridhar, J. (2014). Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules, 19(9), 15196-15212. doi:10.3390/molecules190915196

Sekula, B., Zielinski, K., & Bujacz, A. (2013). Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. International Journal of Biological Macromolecules, 60, 316-324. doi:10.1016/j.ijbiomac.2013.06.004

Shen, G.-F., Liu, T.-T., Wang, Q., Jiang, M., & Shi, J.-H. (2015). Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 153, 380-390. doi:10.1016/j.jphotobiol.2015.10.023

Sigismund, S., Avanzato, D., & Lanzetti, L. (2017). Emerging functions of the EGFR in cancer. Molecular Oncology, 12(1), 3-20. doi:10.1002/1878-0261.12155

Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., … Bacus, S. (2005). Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. Journal of Clinical Oncology, 23(11), 2502-2512. doi:10.1200/jco.2005.12.157

Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 9. doi:10.3389/fonc.2019.00800

Towles, J. K., Clark, R. N., Wahlin, M. D., Uttamsingh, V., Rettie, A. E., & Jackson, K. D. (2016). Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib. Drug Metabolism and Disposition, 44(10), 1584-1597. doi:10.1124/dmd.116.070839

Vargas, F., Canudas, N., Miranda, M. A., & Boscar, F. (1993). PHOTODEGRADATION AND in vitro PHOTOTOXICITY OF FENOFIBRATE, A PHOTOSENSITIZING ANTI-HYPEIUIPOPROTEINEMIC DRUG. Photochemistry and Photobiology, 58(4), 471-476. doi:10.1111/j.1751-1097.1993.tb04917.x

Vayá, I., Andreu, I., Lence, E., González‐Bello, C., Consuelo Cuquerella, M., Navarrete‐Miguel, M., … Miranda, M. A. (2020). Characterization of Locally Excited and Charge‐Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry – A European Journal, 26(68), 15922-15930. doi:10.1002/chem.202001336

Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357

Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f

Wilson, J. N., Liu, W., Brown, A. S., & Landgraf, R. (2015). Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Organic & Biomolecular Chemistry, 13(17), 5006-5011. doi:10.1039/c5ob00239g

Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem