Ahmed, S. S., Whritenour, J., Ahmed, M. M., Bibby, L., Darby, L., Wang, X. N., … Dickinson, A. M. (2019). Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicology and Applied Pharmacology, 369, 39-48. doi:10.1016/j.taap.2019.02.005
Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy & Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c
Blakely, K. M., Drucker, A. M., & Rosen, C. F. (2019). Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Safety, 42(7), 827-847. doi:10.1007/s40264-019-00806-5
[+]
Ahmed, S. S., Whritenour, J., Ahmed, M. M., Bibby, L., Darby, L., Wang, X. N., … Dickinson, A. M. (2019). Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicology and Applied Pharmacology, 369, 39-48. doi:10.1016/j.taap.2019.02.005
Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy & Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c
Blakely, K. M., Drucker, A. M., & Rosen, C. F. (2019). Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Safety, 42(7), 827-847. doi:10.1007/s40264-019-00806-5
Bteich, M. (2019). An overview of albumin and alpha-1-acid glycoprotein main characteristics: highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon, 5(11), e02879. doi:10.1016/j.heliyon.2019.e02879
Cosa, G. (2004). Photodegradation and photosensitization in pharmaceutical products: Assessing drug phototoxicity. Pure and Applied Chemistry, 76(2), 263-275. doi:10.1351/pac200476020263
Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869
Friedman, M. D., Lacouture, M., & Dang, C. (2016). Dermatologic Adverse Events Associated With Use of Adjuvant Lapatinib in Combination With Paclitaxel and Trastuzumab for HER2-Positive Breast Cancer: A Case Series Analysis. Clinical Breast Cancer, 16(3), e69-e74. doi:10.1016/j.clbc.2015.11.001
García-Lainez, G., Vayá, I., Marín, M. P., Miranda, M. A., & Andreu, I. (2020). In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Archives of Toxicology, 95(1), 169-178. doi:10.1007/s00204-020-02880-6
Gonzalez, G., & Lage, A. (2007). Cancer Vaccines for Hormone/Growth Factor Immune Deprivation:A Feasible Approach for Cancer Treatment. Current Cancer Drug Targets, 7(3), 229-241. doi:10.2174/156800907780618310
Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542-1555. doi:10.1021/ct200909j
Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5(5), 341-354. doi:10.1038/nrc1609
Ishikawa, T., Kamide, R., & Niimura, M. (1994). Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. The Journal of Dermatology, 21(6), 430-433. doi:10.1111/j.1346-8138.1994.tb01768.x
Johnston, S. R. D., Hegg, R., Im, S.-A., Park, I. H., Burdaeva, O., Kurteva, G., … Gradishar, W. J. (2018). Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor–Positive Metastatic Breast Cancer: ALTERNATIVE. Journal of Clinical Oncology, 36(8), 741-748. doi:10.1200/jco.2017.74.7824
Kabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 160, 229-239. doi:10.1016/j.jphotobiol.2016.04.005
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053
Krasner, J. (1972). Drug-Protein Interaction. Pediatric Clinics of North America, 19(1), 51-63. doi:10.1016/s0031-3955(16)32666-9
Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022
Limones-Herrero, D., Palumbo, F., Vendrell-Criado, V., Andreu, I., Lence, E., González-Bello, C., … Jiménez, M. C. (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117652. doi:10.1016/j.saa.2019.117652
Limones-Herrero, D., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science, 8(4), 2621-2628. doi:10.1039/c6sc04900a
Lin, N. U., Carey, L. A., Liu, M. C., Younger, J., Come, S. E., Ewend, M., … Winer, E. P. (2008). Phase II Trial of Lapatinib for Brain Metastases in Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Journal of Clinical Oncology, 26(12), 1993-1999. doi:10.1200/jco.2007.12.3588
Lin, N. U., Diéras, V., Paul, D., Lossignol, D., Christodoulou, C., Stemmler, H.-J., … Winer, E. P. (2009). Multicenter Phase II Study of Lapatinib in Patients with Brain Metastases from HER2-Positive Breast Cancer. Clinical Cancer Research, 15(4), 1452-1459. doi:10.1158/1078-0432.ccr-08-1080
MEDINA, P., & GOODIN, S. (2008). Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clinical Therapeutics, 30(8), 1426-1447. doi:10.1016/j.clinthera.2008.08.008
Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h
Miranda, M. A., Boscaa, F., Vargas, F., & Canudas, N. (1994). PHOTOSENSITIZATION BY FENOFIBRATE. II. In vitro PHOTOTOXICITY OF THE MAJOR METABOLITES. Photochemistry and Photobiology, 59(2), 171-174. doi:10.1111/j.1751-1097.1994.tb05018.x
Molins-Molina, O., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01028
Montanaro, S., Lhiaubet-Vallet, V., Iesce, M., Previtera, L., & Miranda, M. A. (2008). A Mechanistic Study on the Phototoxicity of Atorvastatin: Singlet Oxygen Generation by a Phenanthrene-like Photoproduct. Chemical Research in Toxicology, 22(1), 173-178. doi:10.1021/tx800294z
Nicholson, R. ., Gee, J. M. ., & Harper, M. . (2001). EGFR and cancer prognosis. European Journal of Cancer, 37, 9-15. doi:10.1016/s0959-8049(01)00231-3
Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277
Pérez-Ruíz, R., Lence, E., Andreu, I., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643
Peters, T. (1995). Ligand Binding by Albumin. All About Albumin, 76-132. doi:10.1016/b978-012552110-9/50005-2
Pinheiro, S., & Curutchet, C. (2017). Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein–Ligand Complex? The Journal of Physical Chemistry B, 121(10), 2265-2278. doi:10.1021/acs.jpcb.7b00217
Ross, J. S., Gay, L. M., Wang, K., Ali, S. M., Chumsri, S., Elvin, J. A., … Stephens, P. J. (2016). NonamplificationERBB2genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti-HER2 targeted therapies. Cancer, 122(17), 2654-2662. doi:10.1002/cncr.30102
Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878-3888. doi:10.1021/ct400314y
Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020
Schroeder, R., Stevens, C., & Sridhar, J. (2014). Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules, 19(9), 15196-15212. doi:10.3390/molecules190915196
Sekula, B., Zielinski, K., & Bujacz, A. (2013). Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. International Journal of Biological Macromolecules, 60, 316-324. doi:10.1016/j.ijbiomac.2013.06.004
Shen, G.-F., Liu, T.-T., Wang, Q., Jiang, M., & Shi, J.-H. (2015). Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 153, 380-390. doi:10.1016/j.jphotobiol.2015.10.023
Sigismund, S., Avanzato, D., & Lanzetti, L. (2017). Emerging functions of the
EGFR
in cancer. Molecular Oncology, 12(1), 3-20. doi:10.1002/1878-0261.12155
Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., … Bacus, S. (2005). Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. Journal of Clinical Oncology, 23(11), 2502-2512. doi:10.1200/jco.2005.12.157
Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 9. doi:10.3389/fonc.2019.00800
Towles, J. K., Clark, R. N., Wahlin, M. D., Uttamsingh, V., Rettie, A. E., & Jackson, K. D. (2016). Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib. Drug Metabolism and Disposition, 44(10), 1584-1597. doi:10.1124/dmd.116.070839
Vargas, F., Canudas, N., Miranda, M. A., & Boscar, F. (1993). PHOTODEGRADATION AND in vitro PHOTOTOXICITY OF FENOFIBRATE, A PHOTOSENSITIZING ANTI-HYPEIUIPOPROTEINEMIC DRUG. Photochemistry and Photobiology, 58(4), 471-476. doi:10.1111/j.1751-1097.1993.tb04917.x
Vayá, I., Andreu, I., Lence, E., González‐Bello, C., Consuelo Cuquerella, M., Navarrete‐Miguel, M., … Miranda, M. A. (2020). Characterization of Locally Excited and Charge‐Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry – A European Journal, 26(68), 15922-15930. doi:10.1002/chem.202001336
Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357
Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f
Wilson, J. N., Liu, W., Brown, A. S., & Landgraf, R. (2015). Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Organic & Biomolecular Chemistry, 13(17), 5006-5011. doi:10.1039/c5ob00239g
Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6
[-]