- -

OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Gil Megías, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Lago-Sari, Rafael es_ES
dc.date.accessioned 2021-06-23T03:30:45Z
dc.date.available 2021-06-23T03:30:45Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168338
dc.description.abstract [EN] Previous works demonstrated that the use of Oxymethylene ether (OMEx) in advanced combustion modes, as the dual-mode dual-fuel combustion, leads to a notable reduction of the lifecycle CO2 emissions while promoting lower NOx and soot emissions than those from conventional diesel combustion. Nonetheless, the low heating value of OMEx results in a fuel consumption increase. A possible solution to avoid this drawback is by blending OMEx with diesel fuel. This will help to introduce the OMEx in the market with minimum changes in the infrastructure. In this context, this work evaluates the impact of using OMEx-diesel blends in different mass percentages (50% and 70% of OMEx in diesel), compared to the reference net fuels (net diesel and OMEx) in a multi-cylinder compression ignition engine operating under dual-mode dual-fuel combustion at different engine loads (25%, 50%, 80% and 100%) and 1800 rpm. At each condition, an air mass sweep was performed to assess the limiting operating conditions with each fuel due to either excessive pressure gradients and soot production, or low combustion efficiency. The results suggested that the OMEx-diesel blends allow to reduce the soot emissions compared to net diesel for all the conditions tested. In addition, blends having an OMEx mass content greater than 70% allowed to fulfill the EUVI limits for NOx with ultra-low soot levels (< 0.01 g/kWh) up to 80% engine load. Nonetheless, the unique fuel able to achieve the EUVI limit for NOx with zero soot emissions simultaneously at 100% of engine load was found to be the pure OMEx. es_ES
dc.description.sponsorship The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). The author R. Sari acknowledges the financial support from the Spanish ministry of science innovation and universities under the grant "Ayudas para contratos predoctorales para la formacion de doctors" (PRE2018-085043). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dual fuel combustion es_ES
dc.subject OMEx es_ES
dc.subject E-Fuels es_ES
dc.subject EUVI emissions es_ES
dc.subject Synthetic fuels es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2020.117898 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2018-085045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Gil Megías, A.; Monsalve-Serrano, J.; Lago-Sari, R. (2020). OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel. 275:1-14. https://doi.org/10.1016/j.fuel.2020.117898 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2020.117898 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 275 es_ES
dc.relation.pasarela S\408749 es_ES
dc.contributor.funder ARAMCO Overseas Company es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references United Nation climate change: the paris agreemen. Available at <https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement accessed in 05/02/2020>. es_ES
dc.description.references Soler A. Role of e-fuels in the European transport system. Literature review. Concawe, Brussels, January 2020. es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010 es_ES
dc.description.references Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987 es_ES
dc.description.references Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238 es_ES
dc.description.references Ershov, M., Potanin, D., Gueseva, A., Abdellatief, T. M. M., & Kapustin, V. (2020). Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel, 261, 116330. doi:10.1016/j.fuel.2019.116330 es_ES
dc.description.references Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001 es_ES
dc.description.references Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c es_ES
dc.description.references Omari A, Heuser B, Pischinger S. Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel, 209, 2017, 232–237, ISSN 0016-2361, doi: 10.1016/j.fuel.2017.07.107. es_ES
dc.description.references Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577 es_ES
dc.description.references Burre J, Bongartz D, Mitsos A. Production of oxymethylene dimethyl ethers from hydrogen and carbon dioxide—Part II: Modeling and analysis for OME3–5, Ind Eng Chem Res, March 2019, 58, 5567–5578, doi: 10.1021/acs.iecr.8b05577. es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622 es_ES
dc.description.references Payri, R., De La Morena, J., Monsalve-Serrano, J., Pesce, F. C., & Vassallo, A. (2018). Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 20(1), 46-57. doi:10.1177/1468087418819250 es_ES
dc.description.references Di Sarli, V., Landi, G., Lisi, L., Saliva, A., & Di Benedetto, A. (2016). Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Applied Catalysis B: Environmental, 197, 116-124. doi:10.1016/j.apcatb.2016.01.073 es_ES
dc.description.references Orihuela, M. P., Gómez-Martín, A., Miceli, P., Becerra, J. A., Chacartegui, R., & Fino, D. (2018). Experimental measurement of the filtration efficiency and pressure drop of wall-flow diesel particulate filters (DPF) made of biomorphic Silicon Carbide using laboratory generated particles. Applied Thermal Engineering, 131, 41-53. doi:10.1016/j.applthermaleng.2017.11.149 es_ES
dc.description.references Pachiannan T, Zhong W, Rajkumar S, He Z, Leng X, Wang Q. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Appl Energy, 251,2019,113380. es_ES
dc.description.references Martins M, Fischer I, Gusberti F, Sari R et al., HCCI of wet ethanol on a dedicated cylinder of a diesel engine, SAE Technical Paper 2017-01-0733, 2017, doi: 10.4271/2017-01-0733. es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 es_ES
dc.description.references Curran S, Hanson R, Wagner R. Reactivity controlled compression ignition combustion on a multi-cylinder light-duty diesel engine. Int J Engine Res 13 (3), 216–225. es_ES
dc.description.references Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion, Int J Engine Res, 2011. 12, June 2011, 209–226. es_ES
dc.description.references Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088 es_ES
dc.description.references Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016 es_ES
dc.description.references García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 es_ES
dc.description.references Molina, S., García, A., Monsalve-Serrano, J., & Estepa, D. (2018). Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 136, 161-168. doi:10.1016/j.applthermaleng.2018.02.106 es_ES
dc.description.references Pedrozo V, May W, Guan W, Zhao H. High efficiency ethanol-diesel dual-fuel combustion: a comparison against conventional diesel combustion from low to full engine load. Fuel, 230, 2018, 440–451, ISSN 0016-2361, doi: 10.1016/j.fuel.2018.05.034. es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 es_ES
dc.description.references Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 es_ES
dc.description.references Luján, J. M., Dolz, V., Monsalve-Serrano, J., & Bernal Maldonado, M. A. (2019). High-pressure exhaust gas recirculation line condensation model of an internal combustion diesel engine operating at cold conditions. International Journal of Engine Research, 22(2), 407-416. doi:10.1177/1468087419868026 es_ES
dc.description.references AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:<https://www.avl.com/documents/10138/885893/Application+Notes >. es_ES
dc.description.references Payri R, Gimeno J, Mata C, Viera A. Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Convers Manage, 154, 2017, 387-393, ISSN 0196-8904, doi: 10.1016/j.enconman.2017.11.029. es_ES
dc.description.references Pedrozo, V. B., May, I., & Zhao, H. (2017). Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR. Applied Energy, 193, 263-275. doi:10.1016/j.apenergy.2017.02.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem