- -

Impact of injection settings on gaseous emissions and particle size distribution in the dual-mode dual-fuel concept

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of injection settings on gaseous emissions and particle size distribution in the dual-mode dual-fuel concept

Mostrar el registro completo del ítem

Bermúdez, V.; Macian Martinez, V.; Villalta-Lara, D.; Soto, L. (2020). Impact of injection settings on gaseous emissions and particle size distribution in the dual-mode dual-fuel concept. International Journal of Engine Research. 21(4):561-577. https://doi.org/10.1177/1468087419844413

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169178

Ficheros en el ítem

Metadatos del ítem

Título: Impact of injection settings on gaseous emissions and particle size distribution in the dual-mode dual-fuel concept
Autor: Bermúdez, Vicente Macian Martinez, Vicente Villalta-Lara, David Soto, Lian
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Reactivity controlled compression ignition concept has been highlighted among the low temperature combustion strategies. However, this combustion strategy presents some problems related to high levels of hydrocarbon ...[+]
Palabras clave: Dual-fuel combustion , Reactivity controlled compression ignition , Injection strategy , Gaseous emissions , Particle size distribution
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087419844413
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087419844413
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/
Descripción: This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419844413.
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This investigation has been funded by VOLVO Group Trucks Technology. The authors also ...[+]
Tipo: Artículo

References

Oppenauer, K. S., & Alberer, D. (2013). Soot formation and oxidation mechanisms during diesel combustion: Analysis and modeling impacts. International Journal of Engine Research, 15(8), 954-964. doi:10.1177/1468087413502661

Rezaei, R., Dinkelacker, F., Tilch, B., Delebinski, T., & Brauer, M. (2016). Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines. International Journal of Engine Research, 17(8), 846-856. doi:10.1177/1468087415619302

Sarangi, A. K., Garner, C. P., McTaggart-Cowan, G. P., Davy, M. H., Wahab, E., & Peckham, M. (2012). The effects of split injections on high exhaust gas recirculation low-temperature diesel engine combustion. International Journal of Engine Research, 14(1), 68-79. doi:10.1177/1468087412450987 [+]
Oppenauer, K. S., & Alberer, D. (2013). Soot formation and oxidation mechanisms during diesel combustion: Analysis and modeling impacts. International Journal of Engine Research, 15(8), 954-964. doi:10.1177/1468087413502661

Rezaei, R., Dinkelacker, F., Tilch, B., Delebinski, T., & Brauer, M. (2016). Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines. International Journal of Engine Research, 17(8), 846-856. doi:10.1177/1468087415619302

Sarangi, A. K., Garner, C. P., McTaggart-Cowan, G. P., Davy, M. H., Wahab, E., & Peckham, M. (2012). The effects of split injections on high exhaust gas recirculation low-temperature diesel engine combustion. International Journal of Engine Research, 14(1), 68-79. doi:10.1177/1468087412450987

Shi, L., Xiao, W., Li, M., Lou, L., & Deng, K. (2017). Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection. Energy, 121, 21-31. doi:10.1016/j.energy.2016.12.128

Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060

Lu, X., Han, D., & Huang, Z. (2011). Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 37(6), 741-783. doi:10.1016/j.pecs.2011.03.003

Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044

Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025

Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046

Kavuri, C., Kokjohn, S. L., Klos, D. T., & Hou, D. (2016). Blending the benefits of reactivity controlled compression ignition and gasoline compression ignition combustion using an adaptive fuel injection system. International Journal of Engine Research, 17(8), 811-824. doi:10.1177/1468087415615255

Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005

Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970

Yinhui, W., Rong, Z., Yanhong, Q., Jianfei, P., Mengren, L., Jianrong, L., … Shijin, S. (2016). The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel, 166, 543-552. doi:10.1016/j.fuel.2015.11.019

Saxena, M. R., & Maurya, R. K. (2017). Effect of premixing ratio, injection timing and compression ratio on nano particle emissions from dual fuel non-road compression ignition engine fueled with gasoline/methanol (port injection) and diesel (direct injection). Fuel, 203, 894-914. doi:10.1016/j.fuel.2017.05.015

Agarwal, A. K., Gupta, T., & Kothari, A. (2011). Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews, 15(6), 3278-3300. doi:10.1016/j.rser.2011.04.002

Bonatesta, F., Chiappetta, E., & La Rocca, A. (2014). Part-load particulate matter from a GDI engine and the connection with combustion characteristics. Applied Energy, 124, 366-376. doi:10.1016/j.apenergy.2014.03.030

Reijnders, J., Boot, M., & de Goey, P. (2018). Particle nucleation-accumulation mode trade-off: A second diesel dilemma? Journal of Aerosol Science, 124, 95-111. doi:10.1016/j.jaerosci.2018.06.013

Überall, A., Otte, R., Eilts, P., & Krahl, J. (2015). A literature research about particle emissions from engines with direct gasoline injection and the potential to reduce these emissions. Fuel, 147, 203-207. doi:10.1016/j.fuel.2015.01.012

Benajes, J. V., López, J. J., Novella, R., & García, A. (2008). ADVANCED METHODOLOGY FOR IMPROVING TESTING EFFICIENCY IN A SINGLE-CYLINDER RESEARCH DIESEL ENGINE. Experimental Techniques, 32(6), 41-47. doi:10.1111/j.1747-1567.2007.00296.x

Nazemi, M., & Shahbakhti, M. (2016). Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine. Applied Energy, 165, 135-150. doi:10.1016/j.apenergy.2015.11.093

Jain, A., Singh, A. P., & Agarwal, A. K. (2017). Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine. Applied Energy, 190, 658-669. doi:10.1016/j.apenergy.2016.12.164

Brückner, C., Pandurangi, S. S., Kyrtatos, P., Bolla, M., Wright, Y. M., & Boulouchos, K. (2017). NOx emissions in direct injection diesel engines – part 1: Development of a phenomenological NOx model using experiments and three-dimensional computational fluid dynamics. International Journal of Engine Research, 19(3), 308-328. doi:10.1177/1468087417704312

Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation Particles in Diesel Exhaust:  Composition Inferred from In Situ Mass Spectrometric Analysis. Environmental Science & Technology, 39(16), 6153-6161. doi:10.1021/es049427m

Zhang, Y., Ghandhi, J., & Rothamer, D. (2017). Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies. International Journal of Engine Research, 19(7), 699-717. doi:10.1177/1468087417721089

Kosaka, H., Aizawa, T., & Kamimoto, T. (2005). Two-dimensional imaging of ignition and soot formation processes in a diesel flame. International Journal of Engine Research, 6(1), 21-42. doi:10.1243/146808705x7347

Corcione, F. E., Merola, S. S., & Vaglieco, B. M. (2002). Evaluation of temporal and spatial distribution of nanometric particles in a diesel engine by broadband optical techniques. International Journal of Engine Research, 3(2), 93-101. doi:10.1243/14680870260127882

Li, X., Guan, C., Luo, Y., & Huang, Z. (2015). Effect of multiple-injection strategies on diesel engine exhaust particle size and nanostructure. Journal of Aerosol Science, 89, 69-76. doi:10.1016/j.jaerosci.2015.07.008

Seong, H. J., & Boehman, A. L. (2012). Studies of soot oxidative reactivity using a diffusion flame burner. Combustion and Flame, 159(5), 1864-1875. doi:10.1016/j.combustflame.2012.01.009

Desantes, J. M., Bermúdez, V., García, A., & Linares, W. G. (2011). A Comprehensive Study of Particle Size Distributions with the Use of PostInjection Strategies in DI Diesel Engines. Aerosol Science and Technology, 45(10), 1161-1175. doi:10.1080/02786826.2011.582898

Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006

Matthias, N., Farron, C., Foster, D. E., Andrie, M., Krieger, R., Najt, P., … Zelenyuk, A. (2011). Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions. SAE International Journal of Fuels and Lubricants, 5(1), 399-409. doi:10.4271/2011-01-2100

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem