Oppenauer, K. S., & Alberer, D. (2013). Soot formation and oxidation mechanisms during diesel combustion: Analysis and modeling impacts. International Journal of Engine Research, 15(8), 954-964. doi:10.1177/1468087413502661
Rezaei, R., Dinkelacker, F., Tilch, B., Delebinski, T., & Brauer, M. (2016). Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines. International Journal of Engine Research, 17(8), 846-856. doi:10.1177/1468087415619302
Sarangi, A. K., Garner, C. P., McTaggart-Cowan, G. P., Davy, M. H., Wahab, E., & Peckham, M. (2012). The effects of split injections on high exhaust gas recirculation low-temperature diesel engine combustion. International Journal of Engine Research, 14(1), 68-79. doi:10.1177/1468087412450987
[+]
Oppenauer, K. S., & Alberer, D. (2013). Soot formation and oxidation mechanisms during diesel combustion: Analysis and modeling impacts. International Journal of Engine Research, 15(8), 954-964. doi:10.1177/1468087413502661
Rezaei, R., Dinkelacker, F., Tilch, B., Delebinski, T., & Brauer, M. (2016). Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines. International Journal of Engine Research, 17(8), 846-856. doi:10.1177/1468087415619302
Sarangi, A. K., Garner, C. P., McTaggart-Cowan, G. P., Davy, M. H., Wahab, E., & Peckham, M. (2012). The effects of split injections on high exhaust gas recirculation low-temperature diesel engine combustion. International Journal of Engine Research, 14(1), 68-79. doi:10.1177/1468087412450987
Shi, L., Xiao, W., Li, M., Lou, L., & Deng, K. (2017). Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection. Energy, 121, 21-31. doi:10.1016/j.energy.2016.12.128
Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060
Lu, X., Han, D., & Huang, Z. (2011). Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 37(6), 741-783. doi:10.1016/j.pecs.2011.03.003
Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044
Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025
Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500
Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046
Kavuri, C., Kokjohn, S. L., Klos, D. T., & Hou, D. (2016). Blending the benefits of reactivity controlled compression ignition and gasoline compression ignition combustion using an adaptive fuel injection system. International Journal of Engine Research, 17(8), 811-824. doi:10.1177/1468087415615255
Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023
Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010
Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005
Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019
Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005
Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970
Yinhui, W., Rong, Z., Yanhong, Q., Jianfei, P., Mengren, L., Jianrong, L., … Shijin, S. (2016). The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel, 166, 543-552. doi:10.1016/j.fuel.2015.11.019
Saxena, M. R., & Maurya, R. K. (2017). Effect of premixing ratio, injection timing and compression ratio on nano particle emissions from dual fuel non-road compression ignition engine fueled with gasoline/methanol (port injection) and diesel (direct injection). Fuel, 203, 894-914. doi:10.1016/j.fuel.2017.05.015
Agarwal, A. K., Gupta, T., & Kothari, A. (2011). Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews, 15(6), 3278-3300. doi:10.1016/j.rser.2011.04.002
Bonatesta, F., Chiappetta, E., & La Rocca, A. (2014). Part-load particulate matter from a GDI engine and the connection with combustion characteristics. Applied Energy, 124, 366-376. doi:10.1016/j.apenergy.2014.03.030
Reijnders, J., Boot, M., & de Goey, P. (2018). Particle nucleation-accumulation mode trade-off: A second diesel dilemma? Journal of Aerosol Science, 124, 95-111. doi:10.1016/j.jaerosci.2018.06.013
Überall, A., Otte, R., Eilts, P., & Krahl, J. (2015). A literature research about particle emissions from engines with direct gasoline injection and the potential to reduce these emissions. Fuel, 147, 203-207. doi:10.1016/j.fuel.2015.01.012
Benajes, J. V., López, J. J., Novella, R., & García, A. (2008). ADVANCED METHODOLOGY FOR IMPROVING TESTING EFFICIENCY IN A SINGLE-CYLINDER RESEARCH DIESEL ENGINE. Experimental Techniques, 32(6), 41-47. doi:10.1111/j.1747-1567.2007.00296.x
Nazemi, M., & Shahbakhti, M. (2016). Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine. Applied Energy, 165, 135-150. doi:10.1016/j.apenergy.2015.11.093
Jain, A., Singh, A. P., & Agarwal, A. K. (2017). Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine. Applied Energy, 190, 658-669. doi:10.1016/j.apenergy.2016.12.164
Brückner, C., Pandurangi, S. S., Kyrtatos, P., Bolla, M., Wright, Y. M., & Boulouchos, K. (2017). NOx emissions in direct injection diesel engines – part 1: Development of a phenomenological NOx model using experiments and three-dimensional computational fluid dynamics. International Journal of Engine Research, 19(3), 308-328. doi:10.1177/1468087417704312
Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080
Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation Particles in Diesel Exhaust: Composition Inferred from In Situ Mass Spectrometric Analysis. Environmental Science & Technology, 39(16), 6153-6161. doi:10.1021/es049427m
Zhang, Y., Ghandhi, J., & Rothamer, D. (2017). Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies. International Journal of Engine Research, 19(7), 699-717. doi:10.1177/1468087417721089
Kosaka, H., Aizawa, T., & Kamimoto, T. (2005). Two-dimensional imaging of ignition and soot formation processes in a diesel flame. International Journal of Engine Research, 6(1), 21-42. doi:10.1243/146808705x7347
Corcione, F. E., Merola, S. S., & Vaglieco, B. M. (2002). Evaluation of temporal and spatial distribution of nanometric particles in a diesel engine by broadband optical techniques. International Journal of Engine Research, 3(2), 93-101. doi:10.1243/14680870260127882
Li, X., Guan, C., Luo, Y., & Huang, Z. (2015). Effect of multiple-injection strategies on diesel engine exhaust particle size and nanostructure. Journal of Aerosol Science, 89, 69-76. doi:10.1016/j.jaerosci.2015.07.008
Seong, H. J., & Boehman, A. L. (2012). Studies of soot oxidative reactivity using a diffusion flame burner. Combustion and Flame, 159(5), 1864-1875. doi:10.1016/j.combustflame.2012.01.009
Desantes, J. M., Bermúdez, V., García, A., & Linares, W. G. (2011). A Comprehensive Study of Particle Size Distributions with the Use of PostInjection Strategies in DI Diesel Engines. Aerosol Science and Technology, 45(10), 1161-1175. doi:10.1080/02786826.2011.582898
Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006
Matthias, N., Farron, C., Foster, D. E., Andrie, M., Krieger, R., Najt, P., … Zelenyuk, A. (2011). Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions. SAE International Journal of Fuels and Lubricants, 5(1), 399-409. doi:10.4271/2011-01-2100
[-]