Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391
Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665
Tauzia, X., & Maiboom, A. (2013). Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions. Applied Energy, 105, 116-124. doi:10.1016/j.apenergy.2012.12.034
[+]
Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391
Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665
Tauzia, X., & Maiboom, A. (2013). Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions. Applied Energy, 105, 116-124. doi:10.1016/j.apenergy.2012.12.034
Abedin, M. J., Masjuki, H. H., Kalam, M. A., Sanjid, A., Rahman, S. M. A., & Masum, B. M. (2013). Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews, 26, 20-33. doi:10.1016/j.rser.2013.05.049
Ajav, E. A., Singh, B., & Bhattacharya, T. K. (2000). Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energy Conversion and Management, 41(14), 1533-1541. doi:10.1016/s0196-8904(99)00175-2
DIMOPOULOS, P., BACH, C., SOLTIC, P., & BOULOUCHOS, K. (2008). Hydrogen–natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment. International Journal of Hydrogen Energy, 33(23), 7224-7236. doi:10.1016/j.ijhydene.2008.07.012
TAYMAZ, I. (2006). An experimental study of energy balance in low heat rejection diesel engine. Energy, 31(2-3), 364-371. doi:10.1016/j.energy.2005.02.004
Olmeda, P., Martín, J., Novella, R., & Blanco-Cavero, D. (2018). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research, 21(5), 811-823. doi:10.1177/1468087418814086
Durgun, O., & Şahin, Z. (2009). Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation. Energy Conversion and Management, 50(1), 43-51. doi:10.1016/j.enconman.2008.09.007
Jia, M., Gingrich, E., Wang, H., Li, Y., Ghandhi, J. B., & Reitz, R. D. (2015). Effect of combustion regime on in-cylinder heat transfer in internal combustion engines. International Journal of Engine Research, 17(3), 331-346. doi:10.1177/1468087415575647
Jung, D., Yong, J., Choi, H., Song, H., & Min, K. (2013). Analysis of engine temperature and energy flow in diesel engine using engine thermal management. Journal of Mechanical Science and Technology, 27(2), 583-592. doi:10.1007/s12206-012-1235-4
Caresana, F., Bilancia, M., & Bartolini, C. M. (2011). Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car. Applied Thermal Engineering, 31(16), 3559-3568. doi:10.1016/j.applthermaleng.2011.07.017
Payri, F., López, J. J., Martín, J., & Carreño, R. (2018). Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 152, 666-681. doi:10.1016/j.energy.2018.03.118
Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Applied Thermal Engineering, 23(11), 1319-1331. doi:10.1016/s1359-4311(03)00080-2
Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase. Applied Thermal Engineering, 23(11), 1301-1317. doi:10.1016/s1359-4311(03)00079-6
Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010
Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005
Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078
Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021
Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x
Tormos, B., Martín, J., Carreño, R., & Ramírez, L. (2018). A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines. Tribology International, 123, 161-179. doi:10.1016/j.triboint.2018.03.007
[-]