- -

Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author Arnau Martínez, Francisco José es_ES
dc.contributor.author Artham, Sushma es_ES
dc.date.accessioned 2021-07-14T03:31:22Z
dc.date.available 2021-07-14T03:31:22Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169182
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419878593. es_ES
dc.description.abstract [EN] In recent years, the interests on transient operation and real driving emissions have increased because of the global concern about environmental pollution that has led to new emissions regulation and new standard testing cycles. In this framework, it is mandatory to focus the engines research on the transient operation, where a Virtual Engine has been used to perform the global energy balance of a 1.6-L diesel engine during a World harmonized Light vehicles Test Cycle. Thus, the energy repartition of the chemical energy has been described with warmed engine and cold start conditions, analyzing in detail the mechanisms affecting the engine consumption. The first analysis focuses on the ¿delay¿ effect affecting the instantaneous energy balance due to the time lag between the in-cylinder processes and pipes: as a main conclusion, it is obtained that it leads to an apparent unbalance than can reach more than 10% of the cumulated fuel energy at the beginning of the cycle, becoming later negligible. Energy split analysis in cold starting World harmonized Light vehicles Test Cycle shows that in this condition the energy accumulation in the block is a key term at the beginning (about 50%) that diminishes its weight until about 10% at the end of the cycle. In warmed conditions, energy accumulation is negligible, but the heat transfer to coolant and oil are higher than in cold starting conditions (21% vs 28%). The lower values of the mean brake efficiency at the beginning of the World harmonized Light vehicles Test Cycle (only about 20%) is affected, especially in cold starting, by the higher mechanical losses due to the higher oil viscosity and the heat rejection from the gases. The friction plays an important role only during the first half of the cycle, with a percentage of about 65% of the total mechanical losses and 10% of the total fuel energy at the end of the World harmonized Light vehicles Test Cycle. However, at the end of the cycle, it does not affect dramatically the mean brake efficiency which is about 31% both in cold starting and warmed World harmonized Light vehicles Test Cycle. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This research has been partially funded by the European Union's Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 ("DiePeR'') and by the Spanish government under the grant agreement TRA2017-89894-R. The authors wish to thank Renault SAS, especially P. Mallet and E. Gaiffas, for supporting this research. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transient es_ES
dc.subject Global energy balance es_ES
dc.subject Virtual Engine es_ES
dc.subject World harmonized Light vehicles Test Cycle es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419878593 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/723976/EU/Diesel efficiency improvement with Particulates and emission Reduction/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Olmeda, P.; Martín, J.; Arnau Martínez, FJ.; Artham, S. (2020). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research. 21(6):1037-1054. https://doi.org/10.1177/1468087419878593 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419878593 es_ES
dc.description.upvformatpinicio 1037 es_ES
dc.description.upvformatpfin 1054 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\415579 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391 es_ES
dc.description.references Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 es_ES
dc.description.references Tauzia, X., & Maiboom, A. (2013). Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions. Applied Energy, 105, 116-124. doi:10.1016/j.apenergy.2012.12.034 es_ES
dc.description.references Abedin, M. J., Masjuki, H. H., Kalam, M. A., Sanjid, A., Rahman, S. M. A., & Masum, B. M. (2013). Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews, 26, 20-33. doi:10.1016/j.rser.2013.05.049 es_ES
dc.description.references Ajav, E. A., Singh, B., & Bhattacharya, T. K. (2000). Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energy Conversion and Management, 41(14), 1533-1541. doi:10.1016/s0196-8904(99)00175-2 es_ES
dc.description.references DIMOPOULOS, P., BACH, C., SOLTIC, P., & BOULOUCHOS, K. (2008). Hydrogen–natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment. International Journal of Hydrogen Energy, 33(23), 7224-7236. doi:10.1016/j.ijhydene.2008.07.012 es_ES
dc.description.references TAYMAZ, I. (2006). An experimental study of energy balance in low heat rejection diesel engine. Energy, 31(2-3), 364-371. doi:10.1016/j.energy.2005.02.004 es_ES
dc.description.references Olmeda, P., Martín, J., Novella, R., & Blanco-Cavero, D. (2018). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research, 21(5), 811-823. doi:10.1177/1468087418814086 es_ES
dc.description.references Durgun, O., & Şahin, Z. (2009). Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation. Energy Conversion and Management, 50(1), 43-51. doi:10.1016/j.enconman.2008.09.007 es_ES
dc.description.references Jia, M., Gingrich, E., Wang, H., Li, Y., Ghandhi, J. B., & Reitz, R. D. (2015). Effect of combustion regime on in-cylinder heat transfer in internal combustion engines. International Journal of Engine Research, 17(3), 331-346. doi:10.1177/1468087415575647 es_ES
dc.description.references Jung, D., Yong, J., Choi, H., Song, H., & Min, K. (2013). Analysis of engine temperature and energy flow in diesel engine using engine thermal management. Journal of Mechanical Science and Technology, 27(2), 583-592. doi:10.1007/s12206-012-1235-4 es_ES
dc.description.references Caresana, F., Bilancia, M., & Bartolini, C. M. (2011). Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car. Applied Thermal Engineering, 31(16), 3559-3568. doi:10.1016/j.applthermaleng.2011.07.017 es_ES
dc.description.references Payri, F., López, J. J., Martín, J., & Carreño, R. (2018). Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 152, 666-681. doi:10.1016/j.energy.2018.03.118 es_ES
dc.description.references Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Applied Thermal Engineering, 23(11), 1319-1331. doi:10.1016/s1359-4311(03)00080-2 es_ES
dc.description.references Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase. Applied Thermal Engineering, 23(11), 1301-1317. doi:10.1016/s1359-4311(03)00079-6 es_ES
dc.description.references Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005 es_ES
dc.description.references Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES
dc.description.references Tormos, B., Martín, J., Carreño, R., & Ramírez, L. (2018). A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines. Tribology International, 123, 161-179. doi:10.1016/j.triboint.2018.03.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem