Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009
Araneo, L., Coghe, A., Brunello, G., & Cossali, G. E. (1999). Experimental Investigation of Gas Density Effects on Diesel Spray Penetration and Entrainment. SAE Technical Paper Series. doi:10.4271/1999-01-0525
Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076
[+]
Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009
Araneo, L., Coghe, A., Brunello, G., & Cossali, G. E. (1999). Experimental Investigation of Gas Density Effects on Diesel Spray Penetration and Entrainment. SAE Technical Paper Series. doi:10.4271/1999-01-0525
Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076
Bilicki, E. W., Ali, S., Machinery, F. F., Academy, P., 1996. Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow. 39
Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., & Schneider, T. (1995). Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles. SAE Technical Paper Series. doi:10.4271/950290
Converge, 2020. Converge is a trade mark of convergent science. https://convergecfd.com.
Dally, B. B., Fletcher, D. F., & Masri, A. R. (1998). Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory and Modelling, 2(2), 193-219. doi:10.1088/1364-7830/2/2/006
David, C. W., 1994. Turbulence modelling CFD wilcox.
Dechoz, J., & Rozé, C. (2004). Surface tension measurement of fuels and alkanes at high pressure under different atmospheres. Applied Surface Science, 229(1-4), 175-182. doi:10.1016/j.apsusc.2004.01.057
Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002
Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023
Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951
Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8
Downar-Zapolski, P., Bilicki, Z., Bolle, L., & Franco, J. (1996). The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow, 22(3), 473-483. doi:10.1016/0301-9322(95)00078-x
Dumouchel, C. (2008). On the experimental investigation on primary atomization of liquid streams. Experiments in Fluids, 45(3), 371-422. doi:10.1007/s00348-008-0526-0
Espey, C., Dec, J. E., Litzinger, T. A., & Santavicca, D. A. (1997). Planar laser rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combustion and Flame, 109(1-2), 65-86. doi:10.1016/s0010-2180(96)00126-5
Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198
Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077
He, Z., Zhang, L., Saha, K., Som, S., Duan, L., & Wang, Q. (2017). Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model. International Communications in Heat and Mass Transfer, 89, 98-107. doi:10.1016/j.icheatmasstransfer.2017.09.021
Hiroyasu, H. (2000). SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS. Atomization and Sprays, 10(3-5), 511-527. doi:10.1615/atomizspr.v10.i3-5.130
Hiroyasu, H., Arai, M., 1990. Struct. Fuel Spray. Diesel Engines, 2002, 10.4271/900475
Ho, C.-M., & Gutmark, E. (1987). Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. Journal of Fluid Mechanics, 179, 383-405. doi:10.1017/s0022112087001587
Hong, J. G., Ku, K. W., Kim, S. R., & Lee, C. W. (2010). EFFECT OF CAVITATION IN CIRCULAR NOZZLE AND ELLIPTICAL NOZZLES ON THE SPRAY CHARACTERISTIC. Atomization and Sprays, 20(10), 877-886. doi:10.1615/atomizspr.v20.i10.40
Hoyas, S., Gil, A., Margot, X., Khuong-Anh, D., & Ravet, F. (2013). Evaluation of the Eulerian–Lagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases. Mathematical and Computer Modelling, 57(7-8), 1686-1693. doi:10.1016/j.mcm.2011.11.006
Husain, H. S., & Hussain, F. (1991). Elliptic jets. Part 2. Dynamics of coherent structures: pairing. Journal of Fluid Mechanics, 233, 439-482. doi:10.1017/s0022112091000551
Hussain, F., & Husain, H. S. (1989). Elliptic jets. Part 1. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257-320. doi:10.1017/s0022112089002843
Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31-75. doi:10.1017/s002211209400323x
Idicheria, C. A., & Pickett, L. M. (2011). Ignition, soot formation, and end-of-combustion transients in diesel combustion under high-EGR conditions. International Journal of Engine Research, 12(4), 376-392. doi:10.1177/1468087411399505
Janicka, J., & Peters, N. (1982). Prediction of turbulent jet diffusion flame lift-off using a pdf transport equation. Symposium (International) on Combustion, 19(1), 367-374. doi:10.1016/s0082-0784(82)80208-7
Kastengren, A., Powell, C. F., Liu, Z., & Wang, J. (2009). Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-Ray Radiography. SAE Technical Paper Series. doi:10.4271/2009-01-0840
Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642
Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309
Krothapalli, A., Baganoff, D., & Karamcheti, K. (1981). On the mixing of a rectangular jet. Journal of Fluid Mechanics, 107(-1), 201. doi:10.1017/s0022112081001730
Ku, K. W., Hong, J. G., & Lee, C.-W. (2011). EFFECT OF INTERNAL FLOW STRUCTURE IN CIRCULAR AND ELLIPTICAL NOZZLES ON SPRAY CHARACTERISTICS. Atomization and Sprays, 21(8), 655-672. doi:10.1615/atomizspr.2012004192
Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7
Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2
Lefebvre, A., McDonell, V., 2017. Atomization and sprays, second edition. https://www.crcpress.com/Atomization-and-Sprays-Second-Edition/Lefebvre-McDonell/p/book/9781498736251. 10.1016/0009-2509(90)87140-N
López, J. J., de la Garza, O. A., De la Morena, J., & Martínez-Martínez, S. (2017). Effects of cavitation in common-rail diesel nozzles on the mixing process. International Journal of Engine Research, 18(10), 1017-1034. doi:10.1177/1468087417697759
MacGregor, S. A. (1991). Air entrainment in spray jets. International Journal of Heat and Fluid Flow, 12(3), 279-283. doi:10.1016/0142-727x(91)90064-3
Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x
Manin, J., Bardi, M., Pickett, L. M., Dahms, R. N., & Oefelein, J. C. (2014). Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel, 134, 531-543. doi:10.1016/j.fuel.2014.05.060
Matsson, A., & Andersson, S. (2002). The Effect of Non-Circular Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine. SAE Technical Paper Series. doi:10.4271/2002-01-2671
Molina, S., Salvador, F. J., Carreres, M., & Jaramillo, D. (2014). A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Conversion and Management, 79, 114-127. doi:10.1016/j.enconman.2013.12.015
Naber, J., Siebers, D. L., 1996. Effect. Gas Density Vaporizat. Penetrat. Dispersion Diesel Sprays, 960034, 10.4271/960034
Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Payri, R., Guardiola, C., Salvador, F. J., & Gimeno, J. (2004). CRITICAL CAVITATION NUMBER DETERMINATION IN DIESEL INJECTION NOZZLES. Experimental Techniques, 28(3), 49-52. doi:10.1111/j.1747-1567.2004.tb00164.x
Payri, R., Novella, R., Carreres, M., Belmar-Gil, M., 2019. Study about the influence of an automatic meshing algorithm on numerical simulations of a gaseous-fueled lean direct injection (LDI) gas turbine combustor in non-reactive conditions. https://ilass19.sciencesconf.org/247299.
Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043
Payri, R., Salvador, J., Gimeno, J., & De la Morena, J. (2011). ANALYSIS OF DIESEL SPRAY ATOMIZATION BY MEANS OF A NEAR-NOZZLE FIELD VISUALIZATION TECHNIQUE. Atomization and Sprays, 21(9), 753-774. doi:10.1615/atomizspr.2012004051
Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686
Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412
Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521
Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650
Reitz, R. D., Diwakar, R., 1987. Structure of high-pressure fuel sprays. 10.4271/870598.
Roache, P. J. (1994). Perspective: A Method for Uniform Reporting of Grid Refinement Studies. Journal of Fluids Engineering, 116(3), 405-413. doi:10.1115/1.2910291
Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035
Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102
Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003
Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569
Salvador, F. J., De la Morena, J., Bracho, G., & Jaramillo, D. (2018). Computational investigation of diesel nozzle internal flow during the complete injection event. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3). doi:10.1007/s40430-018-1074-z
Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220
Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Jaramillo, D. (2016). Numerical simulation of primary atomization in diesel spray at low injection pressure. Journal of Computational and Applied Mathematics, 291, 94-102. doi:10.1016/j.cam.2015.03.044
Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012
Schulz, C., & Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31(1), 75-121. doi:10.1016/j.pecs.2004.08.002
Engine combustion Network. https://ecn.sandia.gov/ecn-data-search/ (last access December 2017).
Senecal, K., Pomraning, E. D., Us, W. I., Jared, K., Horeb, M., Us, W. I., 2011. Method and apparatus for automated grid formation in multi-cell system dynamics models.
SFORZA, P. M., STEIGER, M. H., & TRENTACOSTE, N. (1966). Studies on three-dimensional viscous jets. AIAA Journal, 4(5), 800-806. doi:10.2514/3.3549
Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., & Gao, G.-X. (2015). Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management, 89, 843-861. doi:10.1016/j.enconman.2014.10.047
Tamaki, N., Shimizu, M., & Hiroyasu, H. (2001). ENHANCEMENT OF THE ATOMIZATION OF A LIQUID JET BY CAVITATION IN A NOZZLE HOLE. Atomization and Sprays, 11(2), 14. doi:10.1615/atomizspr.v11.i2.20
Taub, G. N., Lee, H., Balachandar, S., & Sherif, S. A. (2013). A direct numerical simulation study of higher order statistics in a turbulent round jet. Physics of Fluids, 25(11), 115102. doi:10.1063/1.4829045
TRENTACOSTE, N., & SFORZA, P. (1967). Further experimental results for three- dimensional free jets. AIAA Journal, 5(5), 885-891. doi:10.2514/3.4096
Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20
WAKURI, Y., FUJII, M., AMITANI, T., & TSUNEYA, R. (1960). Studies on the Penetration of Fuel Spray in a Diesel Engine. Bulletin of JSME, 3(9), 123-130. doi:10.1299/jsme1958.3.123
Wang, Y., Lee, W. G., Reitz, R. D., & Diwakar, R. (2011). Numerical Simulation of Diesel Sprays Using an Eulerian-Lagrangian Spray and Atomization (ELSA) Model Coupled with Nozzle Flow. SAE Technical Paper Series. doi:10.4271/2011-01-0386
Xue, Q., Battistoni, M., Powell, C. F., Longman, D. E., Quan, S. P., Pomraning, E., … Som, S. (2015). An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. International Journal of Multiphase Flow, 70, 77-88. doi:10.1016/j.ijmultiphaseflow.2014.11.012
Yakhot, V., & Smith, L. M. (1992). The renormalization group, the ?-expansion and derivation of turbulence models. Journal of Scientific Computing, 7(1), 35-61. doi:10.1007/bf01060210
Yu, S., Yin, B., Deng, W., Jia, H., Ye, Z., Xu, B., & Xu, H. (2018). Experimental study on the spray characteristics discharging from elliptical diesel nozzle at typical diesel engine conditions. Fuel, 221, 28-34. doi:10.1016/j.fuel.2018.02.090
Yunyi, G., Changwen, L., Yezhou, H., & Zhijun, P. (1998). An Experimental Study on Droplet Size Characteristics and Air Entrainment of Elliptic Sprays. SAE Technical Paper Series. doi:10.4271/982546
Zhao, H., Quan, S., Dai, M., Pomraning, E., Senecal, P. K., Xue, Q., … Som, S. (2014). Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027193
[-]