- -

Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles

Mostrar el registro completo del ítem

Salvador, FJ.; Pastor Enguídanos, JM.; De La Morena, J.; Martínez-Miracle-Muñoz, EC. (2020). Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles. International Journal of Multiphase Flow. 129:1-19. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103338

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169347

Ficheros en el ítem

Metadatos del ítem

Título: Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles
Autor: Salvador, Francisco Javier Pastor Enguídanos, José Manuel De La Morena, Joaquín Martínez-Miracle-Muñoz, Enrique Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The present work analyses the effect of the eccentricity of diesel nozzle orifices over the spray behaviour by means of CFD simulations. Several orifice geometries with varying horizontal eccentricity (from 0.50 to ...[+]
Palabras clave: Sigma - Y model , HRM , Eccentricity , Diesel , Spray , Atomization
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Multiphase Flow. (issn: 0301-9322 )
DOI: 10.1016/j.ijmultiphaseflow.2020.103338
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103338
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministerio de Ciencia, Innovacion y Universidades of the ...[+]
Tipo: Artículo

References

Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009

Araneo, L., Coghe, A., Brunello, G., & Cossali, G. E. (1999). Experimental Investigation of Gas Density Effects on Diesel Spray Penetration and Entrainment. SAE Technical Paper Series. doi:10.4271/1999-01-0525

Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076 [+]
Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009

Araneo, L., Coghe, A., Brunello, G., & Cossali, G. E. (1999). Experimental Investigation of Gas Density Effects on Diesel Spray Penetration and Entrainment. SAE Technical Paper Series. doi:10.4271/1999-01-0525

Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076

Bilicki, E. W., Ali, S., Machinery, F. F., Academy, P., 1996. Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow. 39

Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., & Schneider, T. (1995). Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles. SAE Technical Paper Series. doi:10.4271/950290

Converge, 2020. Converge is a trade mark of convergent science. https://convergecfd.com.

Dally, B. B., Fletcher, D. F., & Masri, A. R. (1998). Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory and Modelling, 2(2), 193-219. doi:10.1088/1364-7830/2/2/006

David, C. W., 1994. Turbulence modelling CFD wilcox.

Dechoz, J., & Rozé, C. (2004). Surface tension measurement of fuels and alkanes at high pressure under different atmospheres. Applied Surface Science, 229(1-4), 175-182. doi:10.1016/j.apsusc.2004.01.057

Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002

Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023

Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951

Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8

Downar-Zapolski, P., Bilicki, Z., Bolle, L., & Franco, J. (1996). The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow, 22(3), 473-483. doi:10.1016/0301-9322(95)00078-x

Dumouchel, C. (2008). On the experimental investigation on primary atomization of liquid streams. Experiments in Fluids, 45(3), 371-422. doi:10.1007/s00348-008-0526-0

Espey, C., Dec, J. E., Litzinger, T. A., & Santavicca, D. A. (1997). Planar laser rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combustion and Flame, 109(1-2), 65-86. doi:10.1016/s0010-2180(96)00126-5

Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198

Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077

He, Z., Zhang, L., Saha, K., Som, S., Duan, L., & Wang, Q. (2017). Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model. International Communications in Heat and Mass Transfer, 89, 98-107. doi:10.1016/j.icheatmasstransfer.2017.09.021

Hiroyasu, H. (2000). SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS. Atomization and Sprays, 10(3-5), 511-527. doi:10.1615/atomizspr.v10.i3-5.130

Hiroyasu, H., Arai, M., 1990. Struct. Fuel Spray. Diesel Engines, 2002, 10.4271/900475

Ho, C.-M., & Gutmark, E. (1987). Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. Journal of Fluid Mechanics, 179, 383-405. doi:10.1017/s0022112087001587

Hong, J. G., Ku, K. W., Kim, S. R., & Lee, C. W. (2010). EFFECT OF CAVITATION IN CIRCULAR NOZZLE AND ELLIPTICAL NOZZLES ON THE SPRAY CHARACTERISTIC. Atomization and Sprays, 20(10), 877-886. doi:10.1615/atomizspr.v20.i10.40

Hoyas, S., Gil, A., Margot, X., Khuong-Anh, D., & Ravet, F. (2013). Evaluation of the Eulerian–Lagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases. Mathematical and Computer Modelling, 57(7-8), 1686-1693. doi:10.1016/j.mcm.2011.11.006

Husain, H. S., & Hussain, F. (1991). Elliptic jets. Part 2. Dynamics of coherent structures: pairing. Journal of Fluid Mechanics, 233, 439-482. doi:10.1017/s0022112091000551

Hussain, F., & Husain, H. S. (1989). Elliptic jets. Part 1. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257-320. doi:10.1017/s0022112089002843

Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31-75. doi:10.1017/s002211209400323x

Idicheria, C. A., & Pickett, L. M. (2011). Ignition, soot formation, and end-of-combustion transients in diesel combustion under high-EGR conditions. International Journal of Engine Research, 12(4), 376-392. doi:10.1177/1468087411399505

Janicka, J., & Peters, N. (1982). Prediction of turbulent jet diffusion flame lift-off using a pdf transport equation. Symposium (International) on Combustion, 19(1), 367-374. doi:10.1016/s0082-0784(82)80208-7

Kastengren, A., Powell, C. F., Liu, Z., & Wang, J. (2009). Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-Ray Radiography. SAE Technical Paper Series. doi:10.4271/2009-01-0840

Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642

Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309

Krothapalli, A., Baganoff, D., & Karamcheti, K. (1981). On the mixing of a rectangular jet. Journal of Fluid Mechanics, 107(-1), 201. doi:10.1017/s0022112081001730

Ku, K. W., Hong, J. G., & Lee, C.-W. (2011). EFFECT OF INTERNAL FLOW STRUCTURE IN CIRCULAR AND ELLIPTICAL NOZZLES ON SPRAY CHARACTERISTICS. Atomization and Sprays, 21(8), 655-672. doi:10.1615/atomizspr.2012004192

Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2

Lefebvre, A., McDonell, V., 2017. Atomization and sprays, second edition. https://www.crcpress.com/Atomization-and-Sprays-Second-Edition/Lefebvre-McDonell/p/book/9781498736251. 10.1016/0009-2509(90)87140-N

López, J. J., de la Garza, O. A., De la Morena, J., & Martínez-Martínez, S. (2017). Effects of cavitation in common-rail diesel nozzles on the mixing process. International Journal of Engine Research, 18(10), 1017-1034. doi:10.1177/1468087417697759

MacGregor, S. A. (1991). Air entrainment in spray jets. International Journal of Heat and Fluid Flow, 12(3), 279-283. doi:10.1016/0142-727x(91)90064-3

Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x

Manin, J., Bardi, M., Pickett, L. M., Dahms, R. N., & Oefelein, J. C. (2014). Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel, 134, 531-543. doi:10.1016/j.fuel.2014.05.060

Matsson, A., & Andersson, S. (2002). The Effect of Non-Circular Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine. SAE Technical Paper Series. doi:10.4271/2002-01-2671

Molina, S., Salvador, F. J., Carreres, M., & Jaramillo, D. (2014). A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Conversion and Management, 79, 114-127. doi:10.1016/j.enconman.2013.12.015

Naber, J., Siebers, D. L., 1996. Effect. Gas Density Vaporizat. Penetrat. Dispersion Diesel Sprays, 960034, 10.4271/960034

Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010

PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009

Payri, R., Guardiola, C., Salvador, F. J., & Gimeno, J. (2004). CRITICAL CAVITATION NUMBER DETERMINATION IN DIESEL INJECTION NOZZLES. Experimental Techniques, 28(3), 49-52. doi:10.1111/j.1747-1567.2004.tb00164.x

Payri, R., Novella, R., Carreres, M., Belmar-Gil, M., 2019. Study about the influence of an automatic meshing algorithm on numerical simulations of a gaseous-fueled lean direct injection (LDI) gas turbine combustor in non-reactive conditions. https://ilass19.sciencesconf.org/247299.

Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043

Payri, R., Salvador, J., Gimeno, J., & De la Morena, J. (2011). ANALYSIS OF DIESEL SPRAY ATOMIZATION BY MEANS OF A NEAR-NOZZLE FIELD VISUALIZATION TECHNIQUE. Atomization and Sprays, 21(9), 753-774. doi:10.1615/atomizspr.2012004051

Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686

Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412

Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521

Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650

Reitz, R. D., Diwakar, R., 1987. Structure of high-pressure fuel sprays. 10.4271/870598.

Roache, P. J. (1994). Perspective: A Method for Uniform Reporting of Grid Refinement Studies. Journal of Fluids Engineering, 116(3), 405-413. doi:10.1115/1.2910291

Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035

Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102

Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003

Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569

Salvador, F. J., De la Morena, J., Bracho, G., & Jaramillo, D. (2018). Computational investigation of diesel nozzle internal flow during the complete injection event. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3). doi:10.1007/s40430-018-1074-z

Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220

Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Jaramillo, D. (2016). Numerical simulation of primary atomization in diesel spray at low injection pressure. Journal of Computational and Applied Mathematics, 291, 94-102. doi:10.1016/j.cam.2015.03.044

Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012

Schulz, C., & Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31(1), 75-121. doi:10.1016/j.pecs.2004.08.002

Engine combustion Network. https://ecn.sandia.gov/ecn-data-search/ (last access December 2017).

Senecal, K., Pomraning, E. D., Us, W. I., Jared, K., Horeb, M., Us, W. I., 2011. Method and apparatus for automated grid formation in multi-cell system dynamics models.

SFORZA, P. M., STEIGER, M. H., & TRENTACOSTE, N. (1966). Studies on three-dimensional viscous jets. AIAA Journal, 4(5), 800-806. doi:10.2514/3.3549

Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., & Gao, G.-X. (2015). Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management, 89, 843-861. doi:10.1016/j.enconman.2014.10.047

Tamaki, N., Shimizu, M., & Hiroyasu, H. (2001). ENHANCEMENT OF THE ATOMIZATION OF A LIQUID JET BY CAVITATION IN A NOZZLE HOLE. Atomization and Sprays, 11(2), 14. doi:10.1615/atomizspr.v11.i2.20

Taub, G. N., Lee, H., Balachandar, S., & Sherif, S. A. (2013). A direct numerical simulation study of higher order statistics in a turbulent round jet. Physics of Fluids, 25(11), 115102. doi:10.1063/1.4829045

TRENTACOSTE, N., & SFORZA, P. (1967). Further experimental results for three- dimensional free jets. AIAA Journal, 5(5), 885-891. doi:10.2514/3.4096

Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20

WAKURI, Y., FUJII, M., AMITANI, T., & TSUNEYA, R. (1960). Studies on the Penetration of Fuel Spray in a Diesel Engine. Bulletin of JSME, 3(9), 123-130. doi:10.1299/jsme1958.3.123

Wang, Y., Lee, W. G., Reitz, R. D., & Diwakar, R. (2011). Numerical Simulation of Diesel Sprays Using an Eulerian-Lagrangian Spray and Atomization (ELSA) Model Coupled with Nozzle Flow. SAE Technical Paper Series. doi:10.4271/2011-01-0386

Xue, Q., Battistoni, M., Powell, C. F., Longman, D. E., Quan, S. P., Pomraning, E., … Som, S. (2015). An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. International Journal of Multiphase Flow, 70, 77-88. doi:10.1016/j.ijmultiphaseflow.2014.11.012

Yakhot, V., & Smith, L. M. (1992). The renormalization group, the ?-expansion and derivation of turbulence models. Journal of Scientific Computing, 7(1), 35-61. doi:10.1007/bf01060210

Yu, S., Yin, B., Deng, W., Jia, H., Ye, Z., Xu, B., & Xu, H. (2018). Experimental study on the spray characteristics discharging from elliptical diesel nozzle at typical diesel engine conditions. Fuel, 221, 28-34. doi:10.1016/j.fuel.2018.02.090

Yunyi, G., Changwen, L., Yezhou, H., & Zhijun, P. (1998). An Experimental Study on Droplet Size Characteristics and Air Entrainment of Elliptic Sprays. SAE Technical Paper Series. doi:10.4271/982546

Zhao, H., Quan, S., Dai, M., Pomraning, E., Senecal, P. K., Xue, Q., … Som, S. (2014). Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027193

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem