- -

Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding

Mostrar el registro completo del ítem

Rojas-Lema, S.; Ivorra-Martinez, J.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D. (2021). Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding. Journal of Applied Research in Technology & Engineering. 2(2):71-81. https://doi.org/10.4995/jarte.2021.15727

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169561

Ficheros en el ítem

Metadatos del ítem

Título: Manufacturing and compatibilization of binary blends of polyethylene and poly(bulylene succinate) by injection molding
Autor: Rojas-Lema, Sandra Ivorra-Martinez, Juan Gomez-Caturla, Jaume Balart, Rafael Garcia-Garcia, Daniel
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this study was analyzed the effect of three different compatibilizers polyethylene-graft-maleic anhydride (PE-g-MA), unmodified halloysite nanotubes (HNTs), and HNTs treated by silanization with (3-glycidyloxypropyl) ...[+]
Palabras clave: Blends , Halloysite nanotubes , PE-g-MA , Compatibility
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Journal of Applied Research in Technology & Engineering. (eissn: 2695-8821 )
DOI: 10.4995/jarte.2021.15727
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/jarte.2021.15727
Tipo: Artículo

References

Abd El-Rahman, K.M., Ali, S.F.A., Khalil, A., & Kandil, S. (2020). Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. Journal of Polymer Research, 27(8), 1-21. https://doi.org/10.1007/s10965-020-02217-y

Abdolrasouli, M.H., Nazockdast, H., Sadeghi, G.M.M., & Kaschta, J. (2015). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3). https://doi.org/10.1002/app.41300

Aldas, M., Pavon, C., Ferri, J.M., Arrieta, M.P., & López-Martínez, J. (2021). Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers, 13(9), 1506. https://doi.org/10.3390/ polym13091506 [+]
Abd El-Rahman, K.M., Ali, S.F.A., Khalil, A., & Kandil, S. (2020). Influence of poly (butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. Journal of Polymer Research, 27(8), 1-21. https://doi.org/10.1007/s10965-020-02217-y

Abdolrasouli, M.H., Nazockdast, H., Sadeghi, G.M.M., & Kaschta, J. (2015). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3). https://doi.org/10.1002/app.41300

Aldas, M., Pavon, C., Ferri, J.M., Arrieta, M.P., & López-Martínez, J. (2021). Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers, 13(9), 1506. https://doi.org/10.3390/ polym13091506

Bezerra, E.B., França, D.C., Morais, D.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Toughening of bio-PE upon addition of PCL and PEgAA. REM-International Engineering Journal, 72(3), 469-478. https://doi.org/10.1590/0370-44672018720027

Bezerra, E.B., França, D.C.d., Morais, D.D.d.S., Silva, I.D.d.S., Siqueira, D.D., Araújo, E.M., & Wellen, R.M.R. (2019). Compatibility and characterization of Bio-PE/PCL blends. Polímeros, 29(2). https://doi.org/10.1590/0104-1428.02518

Carli, L.N., Daitx, T.S., Soares, G.V., Crespo, J.S., & Mauler, R.S. (2014). The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Applied Clay Science, 87, 311-319. https://doi.org/10.1016/j. clay.2013.11.032

Chrissafis, K., Paraskevopoulos, K., Tsiaoussis, I., & Bikiaris, D. (2009). Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. Journal of Applied Polymer Science, 114(3), 1606-1618. https://doi.org/10.1002/app.30750

Darshan, T., Veluri, S., Kartik, B., Yen-Hsiang, C., & Fang-Chyou, C. (2019). Poly (butylene succinate)/high density polyethylene blend-based nanocomposites with enhanced physical properties-Selectively localized carbon nanotube in pseudo-double percolated structure. Polymer Degradation and Stability, 163, 185-194. https://doi.org/10.1016/j. polymdegradstab.2019.03.009

de Oliveira, A.G., Moreno, J.F., de Sousa, A.M.F., Escócio, V.A., Guimarães, M.J.d.O.C., & da Silva, A.L.N. (2020). Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers. Polymer Bulletin, 77(6), 2889-2904. https://doi.org/10.1007/s00289-019-02887-9

Du, M., Guo, B., & Jia, D. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). European Polymer Journal, 42(6), 1362-1369. https://doi.org/10.1016/j.eurpolymj.2005.12.006

Ferri, J.M., Garcia-Garcia, D., Rayón, E., Samper, M.D., & Balart, R. (2020). Compatibilization and characterization of polylactide and biopolyethylene binary blends by non-reactive and reactive compatibilization approaches. Polymers, 12(6), 1344. https://doi.org/10.3390/polym12061344

Frankland, S., Caglar, A., Brenner, D., & Griebel, M. (2002). Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube− polymer interfaces. The Journal of Physical Chemistry B, 106(12), 3046-3048.

Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018a). Improvement of mechanical and thermal properties of poly (3-hydroxybutyrate)(PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. https://doi.org/10.1016/j.clay.2018.06.042

Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018b). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. https://doi.org/10.1016/j.eurpolymj.2018.04.036

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). https://doi.org/10.1002/app.43940

Hassan, E., Wei, Y., Jiao, H., & Muhuo, Y. (2013). Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of fiber Bioengineering and Informatics, 6(1), 85-94. https://doi.org/10.3993/jfbi03201308

Hassan, M.E.S., Bai, J., & Dou, D.-Q. (2019). Biopolymers; Definition, Classification and Applications. Egyptian Journal of Chemistry, 62(9), 1725-1737. https://doi.org/10.21608/ejchem.2019.6967.1580

Jorda, M., Montava-Jorda, S., Balart, R., Lascano, D., Montanes, N., & Quiles-Carrillo, L. (2019). Functionalization of partially bio-based poly (ethylene terephthalate) by blending with fully bio-based poly (amide) 10, 10 and a glycidyl methacrylate-based compatibilizer. Polymers, 11(8), 1331. https://doi.org/10.3390/polym11081331

Krishnaiah, P., Ratnam, C.T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135, 583-595. https://doi.org/10.1016/j.clay.2016.10.046

Krishnan, A.K., & George, K. (2014). Polymer blend nanocomposites: effect of mercapto silane modified kaolin clay on the thermal properties of Polypropylene/Polystyrene blend. Polymers for advanced technologies, 25(9), 955-962. https://doi.org/10.1002/pat.3333

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of maleinized linseed oil loading as a biobased compatibilizer in poly (butylene succinate) composites with almond shell flour. Materials, 12(5), 685. https://doi.org/10.3390/ma12050685

Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly (Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. https://doi.org/10.3390/ma11112179

Liu, L., Yu, J., Cheng, L., Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669-674. https://doi. org/10.1016/j.compositesa.2009.03.002

Liu, L., Yu, J., Cheng, L., Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013

Lochab, B., Varma, I., & Bijwea, J. (2012). Sustainable polymers derived from naturally occurring materials. Advances in Materials Physics and Chemistry, 2(4), 221-225. https://doi.org/10.4236/ampc.2012.24B056

Montava-Jorda, S., Chacon, V., Lascano, D., Sanchez-Nacher, L., & Montanes, N. (2019). Manufacturing and characterization of functionalized aliphatic polyester from poly (lactic acid) with halloysite nanotubes. Polymers, 11(8), 1314. https://doi.org/10.3390/polym11081314

Nuñez, K., Rosales, C., Perera, R., Villarreal, N., Pastor, J. (2012). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. https://doi.org/10.1002/ pen.22168

Pal, P., Kundu, M.K., Malas, A., & Das, C.K. (2014). Compatibilizing effect of halloysite nanotubes in polar-nonpolar hybrid system. Journal of Applied Polymer Science, 131(1). https://doi.org/10.1002/app.39587

Peres, A.M., & Oréfice, R.L. (2020). Effect of incorporation of Halloysite nanotubes on the structure and properties of lowdensity polyethylene/thermoplastic starch blend. Journal of Polymer Research, 27(8), 1-10. https://doi.org/10.1007/ s10965-020-02185-3

PlasticsEurope. (2020). Plastics - The Facts 2020. An analysis of European plastics production, demand and waste data.

Platnieks, O., Gaidukovs, S., Barkane, A., Sereda, A., Gaidukova, G., Grase, L.,… Skute, M. (2020). Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers, 12(7), 1472. https://doi.org/10.3390/polym12071472

Pöllänen, M., Pirinen, S., Suvanto, M., & Pakkanen, T.T. (2011). Influence of carbon nanotube-polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene. Composites Science and Technology, 71(10), 1353-1360. https://doi.org/10.1016/j.compscitech.2011.05.009

Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. https://doi.org/10.1002/app.47396

Rafiee, F., Otadi, M., Goodarzi, V., Khonakdar, H.A., Jafari, S.H., Mardani, E., & Reuter, U. (2016). Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides. Composites Part B: Engineering, 103, 122-130. https://doi.org/10.1016/j.compositesb.2016.08.013

Riechers, M., Fanini, L., Apicella, A., Galván, C.B., Blondel, E., Espiña, B., . . . Pereira, T.R. (2021). Plastics in our ocean as transdisciplinary challenge. Marine Pollution Bulletin, 164, 112051. https://doi.org/10.1016/j.marpolbul.2021.112051

Rojas-Lema, S., Torres-Giner, S., Quiles-Carrillo, L., Gomez-Caturla, J., Garcia-Garcia, D., & Balart, R. (2021a). On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed BioBased High-Density Polyethylene Films. Antioxidants, 10(1), 14. https://doi.org/10.3390/antiox10010014

Rojas-Lema, S., Ivorra-Martinez, J., Lascano, D., Garcia-Garcia, D., & Balart, R. (2021b). Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering, 2100196. https://doi.org/10.1002/mame.202100196

Samper-Madrigal, M.D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J.M. (2015). The effect of sepiolite on the compatibilization of polyethylene-thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. https://doi.org/10.1007/s10853-014-8647-8

Schmitt, H., Prashantha, K., Soulestin, J., Lacrampe, M., & Krawczak, P. (2012). Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydrate Polymers, 89(3), 920-927. https://doi. org/10.1016/j.carbpol.2012.04.037

Sharma, S., Singh, A.A., Majumdar, A., & Butola, B.S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. https://doi.org/10.1007/s10853-019-03521-9

Siracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate)(Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641

Tanniru, M., Yuan, Q., & Misra, R. (2006). On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47(6), 2133-2146. https://doi.org/10.1016/j.polymer.2006.01.063

Tecchio, P., Freni, P., De Benedetti, B., & Fenouillot, F. (2016). Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production, 112, 316-325. https://doi.org/10.1016/j.jclepro.2015.07.090

Tsiropoulos, I., Faaij, A.P., Lundquist, L., Schenker, U., Briois, J.F., & Patel, M.K. (2015). Life cycle impact assessment of bio-based plastics from sugarcane ethanol. Journal of Cleaner Production, 90, 114-127. https://doi.org/10.1016/j.jclepro.2014.11.071

Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of silica and PCC nanofillers as compatibilizers in immiscible PLA/LDPE blends. Paper presented at the POLYCHAR 22 World Forum on Advanced Materials.

Yang, Y., Chen, Y., Leng, F., Huang, L., Wang, Z., & Tian, W. (2017). Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Preprints, 7(12), 1215.

Zhu, Z., He, H., Xue, B., Zhan, Z., Wang, G., & Chen, M. (2018). Morphology, thermal, mechanical properties and rheological behavior of biodegradable poly (butylene succinate)/poly (lactic acid) in-situ submicrofibrillar composites. Materials, 11(12), 2422. https://doi.org/10.3390/ma11122422

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem