- -

Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins

Show full item record

Colomer Romero, V.; Rogiest, D.; García Manrique, JA.; Crespo, J. (2020). Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins. Materials. 13(24):1-8. https://doi.org/10.3390/ma13245720

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170575

Files in this item

Item Metadata

Title: Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins
Author: Colomer Romero, Vicente Rogiest, Dante García Manrique, Juan Antonio Crespo, J.E
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced ...[+]
Subjects: Green composites , Natural fibres , Hemp fibres , Bending test , Tensile test , Biocomposite
Copyrigths: Reconocimiento (by)
Source:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma13245720
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ma13245720
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108807RB-I00/ES/GEMELOS DIGITALES EN LOS PROCESOS DE FABRICACION ADITIVA PARA COMPONENTES DE FIBRA DE CARBONO: HACIA LA MOVILIDAD SOSTENIBLE/
Thanks:
The authors acknowledge financial support from the Spanish Government, Project PID2019-108807RB-I00.
Type: Artículo

References

Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017

Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18 [+]
Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017

Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18

Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. doi:10.1007/s10853-019-03990-y

Patil, N. V., Rahman, M. M., & Netravali, A. N. (2017). «Green» composites using bioresins from agro‐wastes and modified sisal fibers. Polymer Composites, 40(1), 99-108. doi:10.1002/pc.24607

Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites. Biomass, Biopolymer-Based Materials, and Bioenergy, 103-122. doi:10.1016/b978-0-08-102426-3.00006-0

Adekomaya, O. (2020). Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environmental Science and Pollution Research, 27(8), 8807-8813. doi:10.1007/s11356-019-07557-x

Kim, Y. K., & Chalivendra, V. (2020). Natural fibre composites (NFCs) for construction and automotive industries. Handbook of Natural Fibres, 469-498. doi:10.1016/b978-0-12-818782-1.00014-6

Potluri, R., & Chaitanya Krishna, N. (2020). Potential and Applications of Green Composites in Industrial Space. Materials Today: Proceedings, 22, 2041-2048. doi:10.1016/j.matpr.2020.03.218

Mann, G. S., Singh, L. P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171. doi:10.1177/0892705718816354

Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials https://www.astm.org/Standards/D3039

https://www.pecepoxy.co.uk/data-sheets/TDS_100_1000_v4.pdf

http://www.matrix-composites.co.uk/prod-data-sheet/old/greenpoxy-55-ft-uk.pdf

Członka, S., Strąkowska, A., & Kairytė, A. (2020). The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 13(21), 4709. doi:10.3390/ma13214709

Madhu, P., Mavinkere Rangappa, S., Khan, A., Al Otaibi, A., Al‐Zahrani, S. A., Pradeep, S., … Siengchin, S. (2020). Experimental investigation on the mechanical and morphological behavior of Prosopis juliflora bark fibers/E‐glass/carbon fabrics reinforced hybrid polymeric composites for structural applications. Polymer Composites, 41(12), 4983-4993. doi:10.1002/pc.25768

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record