- -

Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins

Show simple item record

Files in this item

dc.contributor.author Colomer Romero, Vicente es_ES
dc.contributor.author Rogiest, Dante es_ES
dc.contributor.author García Manrique, Juan Antonio es_ES
dc.contributor.author Crespo, J.E es_ES
dc.date.accessioned 2021-07-28T03:30:49Z
dc.date.available 2021-07-28T03:30:49Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170575
dc.description.abstract [EN] Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish Government, Project PID2019-108807RB-I00. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Green composites es_ES
dc.subject Natural fibres es_ES
dc.subject Hemp fibres es_ES
dc.subject Bending test es_ES
dc.subject Tensile test es_ES
dc.subject Biocomposite es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma13245720 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108807RB-I00/ES/GEMELOS DIGITALES EN LOS PROCESOS DE FABRICACION ADITIVA PARA COMPONENTES DE FIBRA DE CARBONO: HACIA LA MOVILIDAD SOSTENIBLE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Colomer Romero, V.; Rogiest, D.; García Manrique, JA.; Crespo, J. (2020). Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins. Materials. 13(24):1-8. https://doi.org/10.3390/ma13245720 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma13245720 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 33333907 es_ES
dc.identifier.pmcid PMC7765312 es_ES
dc.relation.pasarela S\423927 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w es_ES
dc.description.references La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017 es_ES
dc.description.references Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18 es_ES
dc.description.references Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. doi:10.1007/s10853-019-03990-y es_ES
dc.description.references Patil, N. V., Rahman, M. M., & Netravali, A. N. (2017). «Green» composites using bioresins from agro‐wastes and modified sisal fibers. Polymer Composites, 40(1), 99-108. doi:10.1002/pc.24607 es_ES
dc.description.references Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites. Biomass, Biopolymer-Based Materials, and Bioenergy, 103-122. doi:10.1016/b978-0-08-102426-3.00006-0 es_ES
dc.description.references Adekomaya, O. (2020). Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environmental Science and Pollution Research, 27(8), 8807-8813. doi:10.1007/s11356-019-07557-x es_ES
dc.description.references Kim, Y. K., & Chalivendra, V. (2020). Natural fibre composites (NFCs) for construction and automotive industries. Handbook of Natural Fibres, 469-498. doi:10.1016/b978-0-12-818782-1.00014-6 es_ES
dc.description.references Potluri, R., & Chaitanya Krishna, N. (2020). Potential and Applications of Green Composites in Industrial Space. Materials Today: Proceedings, 22, 2041-2048. doi:10.1016/j.matpr.2020.03.218 es_ES
dc.description.references Mann, G. S., Singh, L. P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171. doi:10.1177/0892705718816354 es_ES
dc.description.references Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials https://www.astm.org/Standards/D3039 es_ES
dc.description.references https://www.pecepoxy.co.uk/data-sheets/TDS_100_1000_v4.pdf es_ES
dc.description.references http://www.matrix-composites.co.uk/prod-data-sheet/old/greenpoxy-55-ft-uk.pdf es_ES
dc.description.references Członka, S., Strąkowska, A., & Kairytė, A. (2020). The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 13(21), 4709. doi:10.3390/ma13214709 es_ES
dc.description.references Madhu, P., Mavinkere Rangappa, S., Khan, A., Al Otaibi, A., Al‐Zahrani, S. A., Pradeep, S., … Siengchin, S. (2020). Experimental investigation on the mechanical and morphological behavior of Prosopis juliflora bark fibers/E‐glass/carbon fabrics reinforced hybrid polymeric composites for structural applications. Polymer Composites, 41(12), 4983-4993. doi:10.1002/pc.25768 es_ES


This item appears in the following Collection(s)

Show simple item record