Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w
La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017
Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18
[+]
Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w
La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017
Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18
Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. doi:10.1007/s10853-019-03990-y
Patil, N. V., Rahman, M. M., & Netravali, A. N. (2017). «Green» composites using bioresins from agro‐wastes and modified sisal fibers. Polymer Composites, 40(1), 99-108. doi:10.1002/pc.24607
Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites. Biomass, Biopolymer-Based Materials, and Bioenergy, 103-122. doi:10.1016/b978-0-08-102426-3.00006-0
Adekomaya, O. (2020). Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environmental Science and Pollution Research, 27(8), 8807-8813. doi:10.1007/s11356-019-07557-x
Kim, Y. K., & Chalivendra, V. (2020). Natural fibre composites (NFCs) for construction and automotive industries. Handbook of Natural Fibres, 469-498. doi:10.1016/b978-0-12-818782-1.00014-6
Potluri, R., & Chaitanya Krishna, N. (2020). Potential and Applications of Green Composites in Industrial Space. Materials Today: Proceedings, 22, 2041-2048. doi:10.1016/j.matpr.2020.03.218
Mann, G. S., Singh, L. P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171. doi:10.1177/0892705718816354
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials https://www.astm.org/Standards/D3039
https://www.pecepoxy.co.uk/data-sheets/TDS_100_1000_v4.pdf
http://www.matrix-composites.co.uk/prod-data-sheet/old/greenpoxy-55-ft-uk.pdf
Członka, S., Strąkowska, A., & Kairytė, A. (2020). The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 13(21), 4709. doi:10.3390/ma13214709
Madhu, P., Mavinkere Rangappa, S., Khan, A., Al Otaibi, A., Al‐Zahrani, S. A., Pradeep, S., … Siengchin, S. (2020). Experimental investigation on the mechanical and morphological behavior of
Prosopis juliflora
bark fibers/E‐glass/carbon fabrics reinforced hybrid polymeric composites for structural applications. Polymer Composites, 41(12), 4983-4993. doi:10.1002/pc.25768
[-]