- -

A numerical study of the effect of nozzle diameter on diesel combustion ignition and flame stabilization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A numerical study of the effect of nozzle diameter on diesel combustion ignition and flame stabilization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes Fernández, José Mª es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Pachano-Prieto, Leonardo Manuel es_ES
dc.date.accessioned 2021-09-03T03:33:36Z
dc.date.available 2021-09-03T03:33:36Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171315
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419864203. es_ES
dc.description.abstract [EN] The role of nozzle diameter on diesel combustion is studied by performing computational fluid dynamics calculations of Spray A and Spray D from the Engine Combustion Network. These are well-characterized single-hole sprays in a quiescent environment chamber with thermodynamic conditions representative of modern diesel engines. First, the inert spray evolution is described with the inclusion of the concept of mixing trajectories and local residence time into the analysis. Such concepts enable the quantification of the mixing rate, showing that it decreases with the increase in nozzle diameter. In a second step, the reacting spray evolution is studied focusing on the local heat release rate distribution during the auto-ignition sequence and the quasi-steady state. The capability of a well-mixed-based and a flamelet-based combustion model to predict diesel combustion is also assessed. On one hand, results show that turbulence-chemistry interaction has a profound effect on the description of the reacting spray evolution. On the other hand, the mixing rate, characterized in terms of the local residence time, drives the main changes introduced by the increase of the nozzle diameter when comparing Spray A and Spray D. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The work was partially funded by the Government of Spain through the CHEST Project (TRA2017-89139-C2-1-R) and by Universitat Politecnica de Valencia through the Programa de Ayudas de Investigaciony Desarrollo (PAID-01-16). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel spray es_ES
dc.subject Nozzle diameter es_ES
dc.subject Residence time es_ES
dc.subject Well-mixed es_ES
dc.subject Flamelet es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A numerical study of the effect of nozzle diameter on diesel combustion ignition and flame stabilization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419864203 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes Fernández, JM.; García-Oliver, JM.; Novella Rosa, R.; Pachano-Prieto, LM. (2020). A numerical study of the effect of nozzle diameter on diesel combustion ignition and flame stabilization. International Journal of Engine Research. 21(1):101-121. https://doi.org/10.1177/1468087419864203 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419864203 es_ES
dc.description.upvformatpinicio 101 es_ES
dc.description.upvformatpfin 121 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\391744 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Pickett, L. M., & Siebers, D. L. (2002). An investigation of diesel soot formation processes using micro-orifices. Proceedings of the Combustion Institute, 29(1), 655-662. doi:10.1016/s1540-7489(02)80084-0 es_ES
dc.description.references Pickett, L. M., & Siebers, D. L. (2005). Orifice Diameter Effects on Diesel Fuel Jet Flame Structure. Journal of Engineering for Gas Turbines and Power, 127(1), 187-196. doi:10.1115/1.1760525 es_ES
dc.description.references Du, C., Andersson, S., & Andersson, M. (2018). Two-dimensional measurements of soot in a turbulent diffusion diesel flame: the effects of injection pressure, nozzle orifice diameter, and gas density. Combustion Science and Technology, 190(9), 1659-1688. doi:10.1080/00102202.2018.1461850 es_ES
dc.description.references Ishibashi, R., & Tsuru, D. (2016). An optical investigation of combustion process of a direct high-pressure injection of natural gas. Journal of Marine Science and Technology, 22(3), 447-458. doi:10.1007/s00773-016-0422-x es_ES
dc.description.references Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., & Walther, J. H. (2017). Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method. Energy Procedia, 142, 1028-1033. doi:10.1016/j.egypro.2017.12.350 es_ES
dc.description.references Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686 es_ES
dc.description.references García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023 es_ES
dc.description.references Dahms, R. N., Paczko, G. A., Skeen, S. A., & Pickett, L. M. (2017). Understanding the ignition mechanism of high-pressure spray flames. Proceedings of the Combustion Institute, 36(2), 2615-2623. doi:10.1016/j.proci.2016.08.023 es_ES
dc.description.references Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531 es_ES
dc.description.references Matusik, K. E., Duke, D. J., Kastengren, A. L., Sovis, N., Swantek, A. B., & Powell, C. F. (2017). High-resolution X-ray tomography of Engine Combustion Network diesel injectors. International Journal of Engine Research, 19(9), 963-976. doi:10.1177/1468087417736985 es_ES
dc.description.references Pandurangi, S. S., Bolla, M., Wright, Y. M., Boulouchos, K., Skeen, S. A., Manin, J., & Pickett, L. M. (2016). Onset and progression of soot in high-pressure n-dodecane sprays under diesel engine conditions. International Journal of Engine Research, 18(5-6), 436-452. doi:10.1177/1468087416661041 es_ES
dc.description.references Aubagnac-Karkar, D., Michel, J.-B., Colin, O., & Darabiha, N. (2017). Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray. International Journal of Engine Research, 19(4), 434-448. doi:10.1177/1468087417714351 es_ES
dc.description.references Ihme, M., Ma, P. C., & Bravo, L. (2018). Large eddy simulations of diesel-fuel injection and auto-ignition at transcritical conditions. International Journal of Engine Research, 20(1), 58-68. doi:10.1177/1468087418819546 es_ES
dc.description.references Yue, Z., & Reitz, R. D. (2017). An equilibrium phase spray model for high-pressure fuel injection and engine combustion simulations. International Journal of Engine Research, 20(2), 203-215. doi:10.1177/1468087417744144 es_ES
dc.description.references Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003 es_ES
dc.description.references Pei, Y., Hawkes, E. R., & Kook, S. (2013). Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 34(2), 3039-3047. doi:10.1016/j.proci.2012.07.033 es_ES
dc.description.references Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., & Walther, J. H. (2018). Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method. Combustion and Flame, 193, 363-383. doi:10.1016/j.combustflame.2018.03.030 es_ES
dc.description.references D’Errico, G., Lucchini, T., Contino, F., Jangi, M., & Bai, X.-S. (2014). Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combustion Theory and Modelling, 18(1), 65-88. doi:10.1080/13647830.2013.860238 es_ES
dc.description.references Kösters, A., Karlsson, A., Oevermann, M., D’Errico, G., & Lucchini, T. (2015). RANS predictions of turbulent diffusion flames: comparison of a reactor and a flamelet combustion model to the well stirred approach. Combustion Theory and Modelling, 19(1), 81-106. doi:10.1080/13647830.2014.982342 es_ES
dc.description.references Lucchini, T., D’Errico, G., Onorati, A., Frassoldati, A., Stagni, A., & Hardy, G. (2017). Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions. SAE International Journal of Engines, 10(2), 593-607. doi:10.4271/2017-01-0556 es_ES
dc.description.references Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006 es_ES
dc.description.references Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521 es_ES
dc.description.references Novella, R., García, A., Pastor, J. M., & Domenech, V. (2011). The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling. Mathematical and Computer Modelling, 54(7-8), 1706-1719. doi:10.1016/j.mcm.2010.12.048 es_ES
dc.description.references CONVERGE manual. Madison, WI: Convergent Science, 2016. es_ES
dc.description.references Yao, T., Pei, Y., Zhong, B.-J., Som, S., Lu, T., & Luo, K. H. (2017). A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel, 191, 339-349. doi:10.1016/j.fuel.2016.11.083 es_ES
dc.description.references Perez E. Application of a flamelet-based combustion model to diesel-like reacting sprays. Unpublished PhD Thesis, Universitat Politècnica de València, Valencia, 2019. es_ES
dc.description.references Peters, N. (2000). Turbulent Combustion. doi:10.1017/cbo9780511612701 es_ES
dc.description.references Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014 es_ES
dc.description.references Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 es_ES
dc.description.references Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012 es_ES
dc.description.references Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004 es_ES
dc.description.references Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., Walther, J. H., & Glarborg, P. (2019). Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion. Fuel, 237, 676-685. doi:10.1016/j.fuel.2018.10.020 es_ES
dc.description.references Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem