Pickett, L. M., & Siebers, D. L. (2002). An investigation of diesel soot formation processes using micro-orifices. Proceedings of the Combustion Institute, 29(1), 655-662. doi:10.1016/s1540-7489(02)80084-0
Pickett, L. M., & Siebers, D. L. (2005). Orifice Diameter Effects on Diesel Fuel Jet Flame Structure. Journal of Engineering for Gas Turbines and Power, 127(1), 187-196. doi:10.1115/1.1760525
Du, C., Andersson, S., & Andersson, M. (2018). Two-dimensional measurements of soot in a turbulent diffusion diesel flame: the effects of injection pressure, nozzle orifice diameter, and gas density. Combustion Science and Technology, 190(9), 1659-1688. doi:10.1080/00102202.2018.1461850
[+]
Pickett, L. M., & Siebers, D. L. (2002). An investigation of diesel soot formation processes using micro-orifices. Proceedings of the Combustion Institute, 29(1), 655-662. doi:10.1016/s1540-7489(02)80084-0
Pickett, L. M., & Siebers, D. L. (2005). Orifice Diameter Effects on Diesel Fuel Jet Flame Structure. Journal of Engineering for Gas Turbines and Power, 127(1), 187-196. doi:10.1115/1.1760525
Du, C., Andersson, S., & Andersson, M. (2018). Two-dimensional measurements of soot in a turbulent diffusion diesel flame: the effects of injection pressure, nozzle orifice diameter, and gas density. Combustion Science and Technology, 190(9), 1659-1688. doi:10.1080/00102202.2018.1461850
Ishibashi, R., & Tsuru, D. (2016). An optical investigation of combustion process of a direct high-pressure injection of natural gas. Journal of Marine Science and Technology, 22(3), 447-458. doi:10.1007/s00773-016-0422-x
Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., & Walther, J. H. (2017). Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method. Energy Procedia, 142, 1028-1033. doi:10.1016/j.egypro.2017.12.350
Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686
García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023
Dahms, R. N., Paczko, G. A., Skeen, S. A., & Pickett, L. M. (2017). Understanding the ignition mechanism of high-pressure spray flames. Proceedings of the Combustion Institute, 36(2), 2615-2623. doi:10.1016/j.proci.2016.08.023
Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531
Matusik, K. E., Duke, D. J., Kastengren, A. L., Sovis, N., Swantek, A. B., & Powell, C. F. (2017). High-resolution X-ray tomography of Engine Combustion Network diesel injectors. International Journal of Engine Research, 19(9), 963-976. doi:10.1177/1468087417736985
Pandurangi, S. S., Bolla, M., Wright, Y. M., Boulouchos, K., Skeen, S. A., Manin, J., & Pickett, L. M. (2016). Onset and progression of soot in high-pressure n-dodecane sprays under diesel engine conditions. International Journal of Engine Research, 18(5-6), 436-452. doi:10.1177/1468087416661041
Aubagnac-Karkar, D., Michel, J.-B., Colin, O., & Darabiha, N. (2017). Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray. International Journal of Engine Research, 19(4), 434-448. doi:10.1177/1468087417714351
Ihme, M., Ma, P. C., & Bravo, L. (2018). Large eddy simulations of diesel-fuel injection and auto-ignition at transcritical conditions. International Journal of Engine Research, 20(1), 58-68. doi:10.1177/1468087418819546
Yue, Z., & Reitz, R. D. (2017). An equilibrium phase spray model for high-pressure fuel injection and engine combustion simulations. International Journal of Engine Research, 20(2), 203-215. doi:10.1177/1468087417744144
Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003
Pei, Y., Hawkes, E. R., & Kook, S. (2013). Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 34(2), 3039-3047. doi:10.1016/j.proci.2012.07.033
Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., & Walther, J. H. (2018). Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method. Combustion and Flame, 193, 363-383. doi:10.1016/j.combustflame.2018.03.030
D’Errico, G., Lucchini, T., Contino, F., Jangi, M., & Bai, X.-S. (2014). Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combustion Theory and Modelling, 18(1), 65-88. doi:10.1080/13647830.2013.860238
Kösters, A., Karlsson, A., Oevermann, M., D’Errico, G., & Lucchini, T. (2015). RANS predictions of turbulent diffusion flames: comparison of a reactor and a flamelet combustion model to the well stirred approach. Combustion Theory and Modelling, 19(1), 81-106. doi:10.1080/13647830.2014.982342
Lucchini, T., D’Errico, G., Onorati, A., Frassoldati, A., Stagni, A., & Hardy, G. (2017). Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions. SAE International Journal of Engines, 10(2), 593-607. doi:10.4271/2017-01-0556
Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006
Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521
Novella, R., García, A., Pastor, J. M., & Domenech, V. (2011). The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling. Mathematical and Computer Modelling, 54(7-8), 1706-1719. doi:10.1016/j.mcm.2010.12.048
CONVERGE manual. Madison, WI: Convergent Science, 2016.
Yao, T., Pei, Y., Zhong, B.-J., Som, S., Lu, T., & Luo, K. H. (2017). A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel, 191, 339-349. doi:10.1016/j.fuel.2016.11.083
Perez E. Application of a flamelet-based combustion model to diesel-like reacting sprays. Unpublished PhD Thesis, Universitat Politècnica de València, Valencia, 2019.
Peters, N. (2000). Turbulent Combustion. doi:10.1017/cbo9780511612701
Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014
Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042
Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012
Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004
Pang, K. M., Jangi, M., Bai, X.-S., Schramm, J., Walther, J. H., & Glarborg, P. (2019). Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion. Fuel, 237, 676-685. doi:10.1016/j.fuel.2018.10.020
Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007
[-]