Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106
Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066
Taibani, A., Visaria, M., Phalke, V., Alankar, A., & Krishnan, S. (2019). Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines. SAE International Journal of Engines, 12(2). doi:10.4271/03-12-02-0009
[+]
Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106
Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066
Taibani, A., Visaria, M., Phalke, V., Alankar, A., & Krishnan, S. (2019). Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines. SAE International Journal of Engines, 12(2). doi:10.4271/03-12-02-0009
Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274
Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661
Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:7<587::aid-er604>3.0.co;2-f
Dai, X. (Hunter), Singh, S., Krishnan, S. R., & Srinivasan, K. K. (2018). Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings. International Journal of Engine Research, 21(5), 781-793. doi:10.1177/1468087418783637
Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040
Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903
Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264
Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045
Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452
Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013
Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9
Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021
Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639
Lu, Y., Zhang, X., Xiang, P., & Dong, D. (2017). Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Applied Thermal Engineering, 113, 796-812. doi:10.1016/j.applthermaleng.2016.11.070
[-]