- -

L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains

Mostrar el registro completo del ítem

Lizama, C.; Murillo Arcila, M. (2020). L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains. Mathematics. 8(10):1-9. https://doi.org/10.3390/math8101748

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171999

Ficheros en el ítem

Metadatos del ítem

Título: L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains
Autor: Lizama, Carlos Murillo Arcila, Marina
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We examine the Cauchy problem for a model of linear acoustics, called the Moore-Gibson-Thompson equation, describing a sound propagation in thermo-viscous elastic media with two temperatures on cylindrical domains. ...[+]
Palabras clave: Well-posedness , Moore-Gibson-Thompson equation , Degenerate evolution equations , R-boundedness
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8101748
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8101748
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/FONDECYT//1180041/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/
Agradecimientos:
C.L. is partially supported by FONDECYT grant number 1180041; M.M.-A. is supported by MEC, grants MTM2016-75963-P and PID2019-105011GB-I00.
Tipo: Artículo

References

Quintanilla, R. (2020). Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1, 100006. doi:10.1016/j.apples.2020.100006

Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(4), 614-627. doi:10.1007/bf01594969

Chen, P. J., & Williams, W. O. (1968). A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(6), 969-970. doi:10.1007/bf01602278 [+]
Quintanilla, R. (2020). Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1, 100006. doi:10.1016/j.apples.2020.100006

Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(4), 614-627. doi:10.1007/bf01594969

Chen, P. J., & Williams, W. O. (1968). A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(6), 969-970. doi:10.1007/bf01602278

Chen, P. J., Gurtin, M. E., & Williams, W. O. (1969). On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 20(1), 107-112. doi:10.1007/bf01591120

Quintanilla, R. (2004). On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica, 168(1-2), 61-73. doi:10.1007/s00707-004-0073-6

Youssef, H. M. (2006). Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics, 71(3), 383-390. doi:10.1093/imamat/hxh101

Magaña, A., & Quintanilla, R. (2008). Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories. Mathematics and Mechanics of Solids, 14(7), 622-634. doi:10.1177/1081286507087653

Quintanilla, R. (2019). Moore–Gibson–Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24(12), 4020-4031. doi:10.1177/1081286519862007

Bazarra, N., Fernández, J. R., & Quintanilla, R. (2021). Analysis of a Moore–Gibson–Thompson thermoelastic problem. Journal of Computational and Applied Mathematics, 382, 113058. doi:10.1016/j.cam.2020.113058

Pellicer, M., & Quintanilla, R. (2020). On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation. Zeitschrift für angewandte Mathematik und Physik, 71(3). doi:10.1007/s00033-020-01307-7

Denk, R., & Nau, T. (2013). Discrete Fourier multipliers and cylindrical boundary-value problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143(6), 1163-1183. doi:10.1017/s0308210511001454

Nau, T. (2013). The Laplacian on Cylindrical Domains. Integral Equations and Operator Theory, 75(3), 409-431. doi:10.1007/s00020-012-2031-3

Arendt, W., & Bu, S. (2002). The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Mathematische Zeitschrift, 240(2), 311-343. doi:10.1007/s002090100384

Keyantuo, V., & Lizama, C. (2004). Fourier Multipliers and Integro‐Differential Equations in Banach Spaces. Journal of the London Mathematical Society, 69(3), 737-750. doi:10.1112/s0024610704005198

Keyantuo, V., & Lizama, C. (2006). Periodic solutions of second order differential equations in Banach spaces. Mathematische Zeitschrift, 253(3), 489-514. doi:10.1007/s00209-005-0919-1

Cai, G., & Bu, S. (2016). Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces. Israel Journal of Mathematics, 212(1), 163-188. doi:10.1007/s11856-016-1282-0

Conejero, J. A., Lizama, C., Murillo-Arcila, M., & Seoane-Sepúlveda, J. B. (2018). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics, 229(1), 219-254. doi:10.1007/s11856-018-1796-8

Guidotti, P. (2004). Elliptic and parabolic problems in unbounded domains. Mathematische Nachrichten, 272(1), 32-45. doi:10.1002/mana.200310187

Desch, W., Hieber, M., & Prüss, J. (2001). $ L^p $-Theory of the Stokes equation in a half space. Journal of Evolution Equations, 1(1), 115-142. doi:10.1007/pl00001362

Bezerra, F. D. M., & Santos, L. A. (2020). Fractional powers approach of operators for abstract evolution equations of third order in time. Journal of Differential Equations, 269(7), 5661-5679. doi:10.1016/j.jde.2020.04.020

Conti, M., Pata, V., Pellicer, M., & Quintanilla, R. (2020). On the analyticity of the MGT-viscoelastic plate with heat conduction. Journal of Differential Equations, 269(10), 7862-7880. doi:10.1016/j.jde.2020.05.043

Denk, R., Hieber, M., & Prüss, J. (2003). ℛ-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society, 166(788), 0-0. doi:10.1090/memo/0788

Keyantuo, V., & Lizama, C. (2011). A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Mathematische Nachrichten, 284(4), 494-506. doi:10.1002/mana.200810158

Kalton, N. J., & Weis, L. (2001). The $H^{\infty}-$ calculus and sums of closed operators. Mathematische Annalen, 321(2), 319-345. doi:10.1007/s002080100231

Wood, I. (2006). Maximal L p -regularity for the Laplacian on Lipschitz domains. Mathematische Zeitschrift, 255(4), 855-875. doi:10.1007/s00209-006-0055-6

Norris, A. N. (2006). Dynamics of thermoelastic Thin Plates: A Comparison of Four Theories. Journal of Thermal Stresses, 29(2), 169-195. doi:10.1080/01495730500257482

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem