Quintanilla, R. (2020). Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1, 100006. doi:10.1016/j.apples.2020.100006
Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(4), 614-627. doi:10.1007/bf01594969
Chen, P. J., & Williams, W. O. (1968). A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(6), 969-970. doi:10.1007/bf01602278
[+]
Quintanilla, R. (2020). Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1, 100006. doi:10.1016/j.apples.2020.100006
Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(4), 614-627. doi:10.1007/bf01594969
Chen, P. J., & Williams, W. O. (1968). A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(6), 969-970. doi:10.1007/bf01602278
Chen, P. J., Gurtin, M. E., & Williams, W. O. (1969). On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 20(1), 107-112. doi:10.1007/bf01591120
Quintanilla, R. (2004). On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica, 168(1-2), 61-73. doi:10.1007/s00707-004-0073-6
Youssef, H. M. (2006). Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics, 71(3), 383-390. doi:10.1093/imamat/hxh101
Magaña, A., & Quintanilla, R. (2008). Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories. Mathematics and Mechanics of Solids, 14(7), 622-634. doi:10.1177/1081286507087653
Quintanilla, R. (2019). Moore–Gibson–Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24(12), 4020-4031. doi:10.1177/1081286519862007
Bazarra, N., Fernández, J. R., & Quintanilla, R. (2021). Analysis of a Moore–Gibson–Thompson thermoelastic problem. Journal of Computational and Applied Mathematics, 382, 113058. doi:10.1016/j.cam.2020.113058
Pellicer, M., & Quintanilla, R. (2020). On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation. Zeitschrift für angewandte Mathematik und Physik, 71(3). doi:10.1007/s00033-020-01307-7
Denk, R., & Nau, T. (2013). Discrete Fourier multipliers and cylindrical boundary-value problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143(6), 1163-1183. doi:10.1017/s0308210511001454
Nau, T. (2013). The Laplacian on Cylindrical Domains. Integral Equations and Operator Theory, 75(3), 409-431. doi:10.1007/s00020-012-2031-3
Arendt, W., & Bu, S. (2002). The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Mathematische Zeitschrift, 240(2), 311-343. doi:10.1007/s002090100384
Keyantuo, V., & Lizama, C. (2004). Fourier Multipliers and Integro‐Differential Equations in Banach Spaces. Journal of the London Mathematical Society, 69(3), 737-750. doi:10.1112/s0024610704005198
Keyantuo, V., & Lizama, C. (2006). Periodic solutions of second order differential equations in Banach spaces. Mathematische Zeitschrift, 253(3), 489-514. doi:10.1007/s00209-005-0919-1
Cai, G., & Bu, S. (2016). Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces. Israel Journal of Mathematics, 212(1), 163-188. doi:10.1007/s11856-016-1282-0
Conejero, J. A., Lizama, C., Murillo-Arcila, M., & Seoane-Sepúlveda, J. B. (2018). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics, 229(1), 219-254. doi:10.1007/s11856-018-1796-8
Guidotti, P. (2004). Elliptic and parabolic problems in unbounded domains. Mathematische Nachrichten, 272(1), 32-45. doi:10.1002/mana.200310187
Desch, W., Hieber, M., & Prüss, J. (2001). $ L^p $-Theory of the Stokes equation in a half space. Journal of Evolution Equations, 1(1), 115-142. doi:10.1007/pl00001362
Bezerra, F. D. M., & Santos, L. A. (2020). Fractional powers approach of operators for abstract evolution equations of third order in time. Journal of Differential Equations, 269(7), 5661-5679. doi:10.1016/j.jde.2020.04.020
Conti, M., Pata, V., Pellicer, M., & Quintanilla, R. (2020). On the analyticity of the MGT-viscoelastic plate with heat conduction. Journal of Differential Equations, 269(10), 7862-7880. doi:10.1016/j.jde.2020.05.043
Denk, R., Hieber, M., & Prüss, J. (2003). ℛ-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society, 166(788), 0-0. doi:10.1090/memo/0788
Keyantuo, V., & Lizama, C. (2011). A characterization of periodic solutions for time-fractional differential equations in UMD
spaces and applications. Mathematische Nachrichten, 284(4), 494-506. doi:10.1002/mana.200810158
Kalton, N. J., & Weis, L. (2001). The $H^{\infty}-$ calculus and sums of closed operators. Mathematische Annalen, 321(2), 319-345. doi:10.1007/s002080100231
Wood, I. (2006). Maximal L p -regularity for the Laplacian on Lipschitz domains. Mathematische Zeitschrift, 255(4), 855-875. doi:10.1007/s00209-006-0055-6
Norris, A. N. (2006). Dynamics of thermoelastic Thin Plates: A Comparison of Four Theories. Journal of Thermal Stresses, 29(2), 169-195. doi:10.1080/01495730500257482
[-]