Mostrar el registro sencillo del ítem
dc.contributor.author | Lizama, Carlos | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.date.accessioned | 2021-09-10T03:30:55Z | |
dc.date.available | 2021-09-10T03:30:55Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171999 | |
dc.description.abstract | [EN] We examine the Cauchy problem for a model of linear acoustics, called the Moore-Gibson-Thompson equation, describing a sound propagation in thermo-viscous elastic media with two temperatures on cylindrical domains. For an adequate combination of the parameters of the model we prove L-p-L-q-well-posedness, and we provide maximal regularity estimates which are optimal thanks to the theory of operator-valued Fourier multipliers. | es_ES |
dc.description.sponsorship | C.L. is partially supported by FONDECYT grant number 1180041; M.M.-A. is supported by MEC, grants MTM2016-75963-P and PID2019-105011GB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Well-posedness | es_ES |
dc.subject | Moore-Gibson-Thompson equation | es_ES |
dc.subject | Degenerate evolution equations | es_ES |
dc.subject | R-boundedness | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8101748 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1180041/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Lizama, C.; Murillo Arcila, M. (2020). L-p-L-q-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains. Mathematics. 8(10):1-9. https://doi.org/10.3390/math8101748 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8101748 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\427331 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Quintanilla, R. (2020). Moore-Gibson-Thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1, 100006. doi:10.1016/j.apples.2020.100006 | es_ES |
dc.description.references | Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(4), 614-627. doi:10.1007/bf01594969 | es_ES |
dc.description.references | Chen, P. J., & Williams, W. O. (1968). A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 19(6), 969-970. doi:10.1007/bf01602278 | es_ES |
dc.description.references | Chen, P. J., Gurtin, M. E., & Williams, W. O. (1969). On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 20(1), 107-112. doi:10.1007/bf01591120 | es_ES |
dc.description.references | Quintanilla, R. (2004). On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica, 168(1-2), 61-73. doi:10.1007/s00707-004-0073-6 | es_ES |
dc.description.references | Youssef, H. M. (2006). Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics, 71(3), 383-390. doi:10.1093/imamat/hxh101 | es_ES |
dc.description.references | Magaña, A., & Quintanilla, R. (2008). Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories. Mathematics and Mechanics of Solids, 14(7), 622-634. doi:10.1177/1081286507087653 | es_ES |
dc.description.references | Quintanilla, R. (2019). Moore–Gibson–Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24(12), 4020-4031. doi:10.1177/1081286519862007 | es_ES |
dc.description.references | Bazarra, N., Fernández, J. R., & Quintanilla, R. (2021). Analysis of a Moore–Gibson–Thompson thermoelastic problem. Journal of Computational and Applied Mathematics, 382, 113058. doi:10.1016/j.cam.2020.113058 | es_ES |
dc.description.references | Pellicer, M., & Quintanilla, R. (2020). On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation. Zeitschrift für angewandte Mathematik und Physik, 71(3). doi:10.1007/s00033-020-01307-7 | es_ES |
dc.description.references | Denk, R., & Nau, T. (2013). Discrete Fourier multipliers and cylindrical boundary-value problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143(6), 1163-1183. doi:10.1017/s0308210511001454 | es_ES |
dc.description.references | Nau, T. (2013). The Laplacian on Cylindrical Domains. Integral Equations and Operator Theory, 75(3), 409-431. doi:10.1007/s00020-012-2031-3 | es_ES |
dc.description.references | Arendt, W., & Bu, S. (2002). The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Mathematische Zeitschrift, 240(2), 311-343. doi:10.1007/s002090100384 | es_ES |
dc.description.references | Keyantuo, V., & Lizama, C. (2004). Fourier Multipliers and Integro‐Differential Equations in Banach Spaces. Journal of the London Mathematical Society, 69(3), 737-750. doi:10.1112/s0024610704005198 | es_ES |
dc.description.references | Keyantuo, V., & Lizama, C. (2006). Periodic solutions of second order differential equations in Banach spaces. Mathematische Zeitschrift, 253(3), 489-514. doi:10.1007/s00209-005-0919-1 | es_ES |
dc.description.references | Cai, G., & Bu, S. (2016). Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces. Israel Journal of Mathematics, 212(1), 163-188. doi:10.1007/s11856-016-1282-0 | es_ES |
dc.description.references | Conejero, J. A., Lizama, C., Murillo-Arcila, M., & Seoane-Sepúlveda, J. B. (2018). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics, 229(1), 219-254. doi:10.1007/s11856-018-1796-8 | es_ES |
dc.description.references | Guidotti, P. (2004). Elliptic and parabolic problems in unbounded domains. Mathematische Nachrichten, 272(1), 32-45. doi:10.1002/mana.200310187 | es_ES |
dc.description.references | Desch, W., Hieber, M., & Prüss, J. (2001). $ L^p $-Theory of the Stokes equation in a half space. Journal of Evolution Equations, 1(1), 115-142. doi:10.1007/pl00001362 | es_ES |
dc.description.references | Bezerra, F. D. M., & Santos, L. A. (2020). Fractional powers approach of operators for abstract evolution equations of third order in time. Journal of Differential Equations, 269(7), 5661-5679. doi:10.1016/j.jde.2020.04.020 | es_ES |
dc.description.references | Conti, M., Pata, V., Pellicer, M., & Quintanilla, R. (2020). On the analyticity of the MGT-viscoelastic plate with heat conduction. Journal of Differential Equations, 269(10), 7862-7880. doi:10.1016/j.jde.2020.05.043 | es_ES |
dc.description.references | Denk, R., Hieber, M., & Prüss, J. (2003). ℛ-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society, 166(788), 0-0. doi:10.1090/memo/0788 | es_ES |
dc.description.references | Keyantuo, V., & Lizama, C. (2011). A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Mathematische Nachrichten, 284(4), 494-506. doi:10.1002/mana.200810158 | es_ES |
dc.description.references | Kalton, N. J., & Weis, L. (2001). The $H^{\infty}-$ calculus and sums of closed operators. Mathematische Annalen, 321(2), 319-345. doi:10.1007/s002080100231 | es_ES |
dc.description.references | Wood, I. (2006). Maximal L p -regularity for the Laplacian on Lipschitz domains. Mathematische Zeitschrift, 255(4), 855-875. doi:10.1007/s00209-006-0055-6 | es_ES |
dc.description.references | Norris, A. N. (2006). Dynamics of thermoelastic Thin Plates: A Comparison of Four Theories. Journal of Thermal Stresses, 29(2), 169-195. doi:10.1080/01495730500257482 | es_ES |