Ahrazem, O., Argandoña, J., Fiore, A., Aguado, C., Luján, R., Rubio-Moraga, Á., … Gómez-Gómez, L. (2018). Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Scientific Reports, 8(1). doi:10.1038/s41598-018-21225-z
Ahrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, Á., Julve, J. M., Orzáez, D., … Gómez-Gómez, L. (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 68(16), 4663-4677. doi:10.1093/jxb/erx277
Ahrazem, O., Gómez-Gómez, L., Rodrigo, M., Avalos, J., & Limón, M. (2016). Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. International Journal of Molecular Sciences, 17(11), 1781. doi:10.3390/ijms17111781
[+]
Ahrazem, O., Argandoña, J., Fiore, A., Aguado, C., Luján, R., Rubio-Moraga, Á., … Gómez-Gómez, L. (2018). Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Scientific Reports, 8(1). doi:10.1038/s41598-018-21225-z
Ahrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, Á., Julve, J. M., Orzáez, D., … Gómez-Gómez, L. (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 68(16), 4663-4677. doi:10.1093/jxb/erx277
Ahrazem, O., Gómez-Gómez, L., Rodrigo, M., Avalos, J., & Limón, M. (2016). Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. International Journal of Molecular Sciences, 17(11), 1781. doi:10.3390/ijms17111781
Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8
Ahrazem, O., Rubio‐Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez‐Gómez, L. (2015). The carotenoid cleavage dioxygenase
CCD
2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609
Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194
ALONSO, G. L., SALINAS, M. R., GARIJO, J., & SÁNCHEZ-FERNÁNDEZ, M. A. (2001). COMPOSITION OF CROCINS AND PICROCROCIN FROM SPANISH SAFFRON (CROCUS SATIVUS L.). Journal of Food Quality, 24(3), 219-233. doi:10.1111/j.1745-4557.2001.tb00604.x
Amin, B., & Hosseinzadeh, H. (2012). Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia, 83(5), 888-895. doi:10.1016/j.fitote.2012.03.022
Apel, W., & Bock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 151(1), 59-66. doi:10.1104/pp.109.140533
Arango, J., Jourdan, M., Geoffriau, E., Beyer, P., & Welsch, R. (2014). Carotene Hydroxylase Activity Determines the Levels of Both α-Carotene and Total Carotenoids in Orange Carrots. The Plant Cell, 26(5), 2223-2233. doi:10.1105/tpc.113.122127
Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006
Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis
. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922
Bukhari, S. I., Manzoor, M., & Dhar, M. K. (2018). A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomedicine & Pharmacotherapy, 98, 733-745. doi:10.1016/j.biopha.2017.12.090
Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007
Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827
Chai, F., Wang, Y., Mei, X., Yao, M., Chen, Y., Liu, H., … Yuan, Y. (2017). Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1). doi:10.1186/s12934-017-0665-1
Cheriyamundath, S., Choudhary, S., & Lopus, M. (2017). Safranal Inhibits HeLa Cell Viability by Perturbing the Reassembly Potential of Microtubules. Phytotherapy Research, 32(1), 170-173. doi:10.1002/ptr.5938
Christodoulou, E., Kadoglou, N. P., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634-1649. doi:10.1111/jphp.12456
Côté, F., Cormier, F., Dufresne, C., & Willemot, C. (2001). A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. Journal of Plant Physiology, 158(5), 553-560. doi:10.1078/0176-1617-00305
D’Archivio, A. A., Giannitto, A., Maggi, M. A., & Ruggieri, F. (2016). Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chemistry, 212, 110-116. doi:10.1016/j.foodchem.2016.05.149
D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4
Demurtas, O. C., Frusciante, S., Ferrante, P., Diretto, G., Azad, N. H., Pietrella, M., … Giuliano, G. (2018). Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Plant Physiology, 177(3), 990-1006. doi:10.1104/pp.17.01815
Diretto, G., Ahrazem, O., Rubio‐Moraga, Á., Fiore, A., Sevi, F., Argandoña, J., & Gómez‐Gómez, L. (2019). UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (
Crocus sativus
). New Phytologist, 224(2), 725-740. doi:10.1111/nph.16079
Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway. PLoS ONE, 2(4), e350. doi:10.1371/journal.pone.0000350
Du, H., Wang, N., Cui, F., Li, X., Xiao, J., & Xiong, L. (2010). Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice
. Plant Physiology, 154(3), 1304-1318. doi:10.1104/pp.110.163741
Eroglu, A., & Harrison, E. H. (2013). Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. Journal of Lipid Research, 54(7), 1719-1730. doi:10.1194/jlr.r039537
Farré, G., Blancquaert, D., Capell, T., Van Der Straeten, D., Christou, P., & Zhu, C. (2014). Engineering Complex Metabolic Pathways in Plants. Annual Review of Plant Biology, 65(1), 187-223. doi:10.1146/annurev-arplant-050213-035825
Fasano, C., Diretto, G., Aversano, R., D’Agostino, N., Di Matteo, A., Frusciante, L., … Carputo, D. (2016). Transcriptome and metabolome of synthetic
Solanum
autotetraploids reveal key genomic stress events following polyploidization. New Phytologist, 210(4), 1382-1394. doi:10.1111/nph.13878
Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi:10.3390/nu6020466
Finley, J. W., & Gao, S. (2017). A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer’s Disease. Journal of Agricultural and Food Chemistry, 65(5), 1005-1020. doi:10.1021/acs.jafc.6b04398
Fraser, P. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228-265. doi:10.1016/j.plipres.2003.10.002
Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., … Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111(33), 12246-12251. doi:10.1073/pnas.1404629111
Georgiadou, G., Tarantilis, P. A., & Pitsikas, N. (2012). Effects of the active constituents of Crocus Sativus L., crocins, in an animal model of obsessive–compulsive disorder. Neuroscience Letters, 528(1), 27-30. doi:10.1016/j.neulet.2012.08.081
Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318
Giorio, G., Stigliani, A. L., & D’Ambrosio, C. (2006). Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Research, 16(1), 15-28. doi:10.1007/s11248-006-9025-3
Gómez-Gómez, L., Pacios, L., Diaz-Perales, A., Garrido-Arandia, M., Argandoña, J., Rubio-Moraga, Á., & Ahrazem, O. (2018). Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. International Journal of Molecular Sciences, 19(5), 1409. doi:10.3390/ijms19051409
Gómez-Gómez, L., Parra-Vega, V., Rivas-Sendra, A., Seguí-Simarro, J., Molina, R., Pallotti, C., … Ahrazem, O. (2017). Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. International Journal of Molecular Sciences, 18(1), 76. doi:10.3390/ijms18010076
Gonda, S., Parizsa, P., Surányi, G., Gyémánt, G., & Vasas, G. (2012). Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method. Journal of Pharmaceutical and Biomedical Analysis, 66, 68-74. doi:10.1016/j.jpba.2012.03.002
Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., & Lucretti, S. (2017). A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 57-70. doi:10.1007/s11240-017-1310-8
Hasunuma, T., Miyazawa, S.-I., Yoshimura, S., Shinzaki, Y., Tomizawa, K.-I., Shindo, K., … Miyake, C. (2008). Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. The Plant Journal, 55(5), 857-868. doi:10.1111/j.1365-313x.2008.03559.x
Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160
Jabini, R., Ehtesham-Gharaee, M., Dalirsani, Z., Mosaffa, F., Delavarian, Z., & Behravan, J. (2017). Evaluation of the Cytotoxic Activity of Crocin and Safranal, Constituents of Saffron, in Oral Squamous Cell Carcinoma (KB Cell Line). Nutrition and Cancer, 69(6), 911-919. doi:10.1080/01635581.2017.1339816
Jia, K.-P., Baz, L., & Al-Babili, S. (2017). From carotenoids to strigolactones. Journal of Experimental Botany, 69(9), 2189-2204. doi:10.1093/jxb/erx476
Koulakiotis, N., Gikas, E., Iatrou, G., Lamari, F., & Tsarbopoulos, A. (2015). Quantitation of Crocins and Picrocrocin in Saffron by HPLC: Application to Quality Control and Phytochemical Differentiation from Other Crocus Taxa. Planta Medica, 81(07), 606-612. doi:10.1055/s-0035-1545873
Kyriakoudi, A., O’Callaghan, Y. C., Galvin, K., Tsimidou, M. Z., & O’Brien, N. M. (2015). Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-d-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). Journal of Agricultural and Food Chemistry, 63(39), 8662-8668. doi:10.1021/acs.jafc.5b03363
Lagarde, D., Beuf, L., & Vermaas, W. (2000). Increased Production of Zeaxanthin and Other Pigments by Application of Genetic Engineering Techniques to
Synechocystis
sp. Strain PCC 6803. Applied and Environmental Microbiology, 66(1), 64-72. doi:10.1128/aem.66.1.64-72.2000
Lage, M., & Cantrell, C. L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae, 121(3), 366-373. doi:10.1016/j.scienta.2009.02.017
Li, Y., Cui, H., Cui, X., & Wang, A. (2016). The altered photosynthetic machinery during compatible virus infection. Current Opinion in Virology, 17, 19-24. doi:10.1016/j.coviro.2015.11.002
Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213-223. doi:10.1093/jxb/erm299
Lopresti, A. L., & Drummond, P. D. (2014). Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Human Psychopharmacology: Clinical and Experimental, 29(6), 517-527. doi:10.1002/hup.2434
Maass, D., Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2009). Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS ONE, 4(7), e6373. doi:10.1371/journal.pone.0006373
Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645
Majer, E., Navarro, J., & Daròs, J. (2015). A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnology Journal, 10(11), 1792-1802. doi:10.1002/biot.201500042
Martin, C., & Li, J. (2017). Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytologist, 216(3), 699-719. doi:10.1111/nph.14730
Masi, E., Taiti, C., Heimler, D., Vignolini, P., Romani, A., & Mancuso, S. (2016). PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food Chemistry, 192, 75-81. doi:10.1016/j.foodchem.2015.06.090
Moraga, A. R., Nohales, P. F., Pérez, J. A. F., & Gómez-Gómez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966. doi:10.1007/s00425-004-1299-1
Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022
Moras, B., Loffredo, L., & Rey, S. (2018). Quality assessment of saffron ( Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract ( Gardenia jasminoides Ellis). Food Chemistry, 257, 325-332. doi:10.1016/j.foodchem.2018.03.025
Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin inGardenia jasminoides. FEBS Letters, 586(7), 1055-1061. doi:10.1016/j.febslet.2012.03.003
Nam, K. N., Park, Y.-M., Jung, H.-J., Lee, J. Y., Min, B. D., Park, S.-U., … Lee, E. H. (2010). Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European Journal of Pharmacology, 648(1-3), 110-116. doi:10.1016/j.ejphar.2010.09.003
Nisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid Metabolism in Plants. Molecular Plant, 8(1), 68-82. doi:10.1016/j.molp.2014.12.007
Nogueira, M., Enfissi, E. M. A., Welsch, R., Beyer, P., Zurbriggen, M. D., & Fraser, P. D. (2019). Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids. Metabolic Engineering, 52, 243-252. doi:10.1016/j.ymben.2018.12.006
Ouyang, E., Li, X., & Zhang, C. (2011). Simultaneous determination of geniposide, chlorogenic acid, crocin1, and rutin in crude and processed fructus gardeniae extracts by high performance liquid chromatography. Pharmacognosy Magazine, 7(28), 267. doi:10.4103/0973-1296.90391
Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and Structure Elucidation of Carotenoid−Glycosyl Esters in Gardenia Fruits (Gardenia jasminoides Ellis) and Saffron (Crocus sativus Linne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615. doi:10.1021/jf950713e
Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619
Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185-194. doi:10.1046/j.0028-646x.2001.00289.x
Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., … Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93. doi:10.1016/j.plipres.2018.04.004
Römer, S., Lübeck, J., Kauder, F., Steiger, S., Adomat, C., & Sandmann, G. (2002). Genetic Engineering of a Zeaxanthin-rich Potato by Antisense Inactivation and Co-suppression of Carotenoid Epoxidation. Metabolic Engineering, 4(4), 263-272. doi:10.1006/mben.2002.0234
Rubio-Moraga, A., Trapero, A., Ahrazem, O., & Gómez-Gómez, L. (2010). Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 71(13), 1506-1513. doi:10.1016/j.phytochem.2010.05.026
Rubio Moraga, A., Ahrazem, O., Rambla, J. L., Granell, A., & Gómez Gómez, L. (2013). Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 8(9), e71946. doi:10.1371/journal.pone.0071946
Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A., & Lomonossoff, G. P. (2012). Using a Virus-Derived System to Manipulate Plant Natural Product Biosynthetic Pathways. Natural Product Biosynthesis by Microorganisms and Plants, Part C, 185-202. doi:10.1016/b978-0-12-404634-4.00009-7
Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., & Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLOS ONE, 12(9), e0184143. doi:10.1371/journal.pone.0184143
Tan, H., Chen, X., Liang, N., Chen, R., Chen, J., Hu, C., … Zhang, L. (2019). Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast. Journal of Experimental Botany, 70(18), 4819-4834. doi:10.1093/jxb/erz211
Tarantilis, P. A., Tsoupras, G., & Polissiou, M. (1995). Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A, 699(1-2), 107-118. doi:10.1016/0021-9673(95)00044-n
Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563
Ting, H., Wang, B., Rydén, A., Woittiez, L., Herpen, T., Verstappen, F. W. A., … Krol, A. (2013). The metabolite chemotype of
N
icotiana benthamiana
transiently expressing artemisinin biosynthetic pathway genes is a function of
CYP
71
AV
1
type and relative gene dosage. New Phytologist, 199(2), 352-366. doi:10.1111/nph.12274
Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3
Wang, B., Kashkooli, A. B., Sallets, A., Ting, H.-M., de Ruijter, N. C. A., Olofsson, L., … van der Krol, A. R. (2016). Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering, 38, 159-169. doi:10.1016/j.ymben.2016.07.004
Wang, W., He, P., Zhao, D., Ye, L., Dai, L., Zhang, X., … Bi, C. (2019). Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 18(1). doi:10.1186/s12934-019-1166-1
Wu, X., Zhou, Y., Yin, F., Mao, C., Li, L., Cai, B., & Lu, T. (2014). Quality control and producing areas differentiation of Gardeniae Fructus for eight bioactive constituents by HPLC–DAD–ESI/MS. Phytomedicine, 21(4), 551-559. doi:10.1016/j.phymed.2013.10.002
Xu, C.-J., Fraser, P. D., Wang, W.-J., & Bramley, P. M. (2006). Differences in the Carotenoid Content of Ordinary Citrus and Lycopene-Accumulating Mutants. Journal of Agricultural and Food Chemistry, 54(15), 5474-5481. doi:10.1021/jf060702t
Xu, H., Lybrand, D., Bennewitz, S., Tissier, A., Last, R. L., & Pichersky, E. (2018). Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Metabolic Engineering, 47, 271-278. doi:10.1016/j.ymben.2018.04.004
Yang, T., Stoopen, G., Yalpani, N., Vervoort, J., de Vos, R., Voster, A., … Jongsma, M. A. (2011). Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metabolic Engineering, 13(4), 414-425. doi:10.1016/j.ymben.2011.01.011
Yuan, L., & Grotewold, E. (2015). Metabolic engineering to enhance the value of plants as green factories. Metabolic Engineering, 27, 83-91. doi:10.1016/j.ymben.2014.11.005
Zhang, C., Ma, J., Fan, L., Zou, Y., Dang, X., Wang, K., & Song, J. (2015). Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue and Cell, 47(3), 291-300. doi:10.1016/j.tice.2015.03.007
Zhu, Q., Zeng, D., Yu, S., Cui, C., Li, J., Li, H., … Liu, Y.-G. (2018). From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm. Molecular Plant, 11(12), 1440-1448. doi:10.1016/j.molp.2018.09.007
[-]