Alcántara, S., Vilanova, R., Pedret, C., 2013. PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning. Journal of Process Control 23 (4), 527 - 542. https://doi.org/10.1016/j.jprocont.2013.01.003
Alcántara, S., Pedret, C., Vilanova, R., 2010. On the model matching approach to PID design: Analytical perspective for robust Servo/Regulator tradeoff tuning. Journal of Process Control 20 (5), 596 - 608. https://doi.org/10.1016/j.jprocont.2010.02.011
Alcántara, S., Pedret, C., Vilanova, R., Skogestad, S., 2011a. Generalized Internal Model Control for balancing input/output disturbance response. Industrial & Engineering Chemistry Research 50 (19), 11170-11180. https://doi.org/10.1021/ie200717z
[+]
Alcántara, S., Vilanova, R., Pedret, C., 2013. PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning. Journal of Process Control 23 (4), 527 - 542. https://doi.org/10.1016/j.jprocont.2013.01.003
Alcántara, S., Pedret, C., Vilanova, R., 2010. On the model matching approach to PID design: Analytical perspective for robust Servo/Regulator tradeoff tuning. Journal of Process Control 20 (5), 596 - 608. https://doi.org/10.1016/j.jprocont.2010.02.011
Alcántara, S., Pedret, C., Vilanova, R., Skogestad, S., 2011a. Generalized Internal Model Control for balancing input/output disturbance response. Industrial & Engineering Chemistry Research 50 (19), 11170-11180. https://doi.org/10.1021/ie200717z
Alcántara, S., Vilanova, R., Pedret, C., 2020. PID Tuning: A Modern Approach via the Weighted Sensitivity Problem (1st ed.). CRC Press. https://doi.org/10.1201/9780429325335-1
Alcántara, S., Vilanova, R., Pedret, C., Skogestad, S., 2012. A look into robustness/performance and servo/regulation issues in PI tuning. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00031
Alcántara, S., Zhang, W., Pedret, C., Vilanova, R., Skogestad, S., 2011b. IMC-like analytical H-inf design with S/SP mixed sensitivity consideration: Utility in PID tuning guidance. Journal of Process Control 21 (6), 976 - 985. https://doi.org/10.1016/j.jprocont.2011.04.007
Alfaro, V. M., Vilanova, R., 2013a. Performance and Robustness Considerations for Tuning of Proportional Integral/Proportional Integral Derivative Controllers with Two Input Filters. Industrial & Engineering Chemistry Research 52, 18287-18302. https://doi.org/10.1021/ie4012694
Alfaro, V. M., Vilanova, R., 2013b. Robust tuning of 2DoF five-parameters PID controllers for inverse response controlled processes. Journal of Process Control 23, 453-462. https://doi.org/10.1016/j.jprocont.2013.01.005
Alfaro, V. M., Vilanova, R., September 2013c. Simple robust tuning of 2DoF PID controllers from a performance/robustness trade-off analysis. Asian Journal of Control 15 (5), 1-14. https://doi.org/10.1002/asjc.653
Alfaro, V. M., Vilanova, R., 2016. Model-Reference Robust Tuning of PID Controllers. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland, ISBN 978-3-319-28213-8.
Alfaro, V. M., Vilanova, R., Méndez, R., Lafuente, J., 2010. Performance/Robustness Tradeoff Analysis of PI/PID Servo and Regulatory Control Systems. In: Proc. of the IEEE International Conference on Industrial Technology. https://doi.org/10.1109/ICIT.2010.5472662
Arrieta, O., Vilanova, R., 2012. Simple servo/regulation proportional-integralderivative (pid) tuning rules for arbitrary ms-based robustness achievement. Industrial & Engineering Chemistry Research 51 (6), 2666-2674. https://doi.org/10.1021/ie201655c
Arrieta, O., Vilanova, R., Rojas, J. D., Meneses, M., 2016. Improved pid controller tuning rules for performance degradation/robustness increase trade-off. Electrical Engineering 98 (3), 233-243. https://doi.org/10.1007/s00202-016-0361-x
Arrieta, O., Visioli, A., Vilanova, R., 2010. PID autotuning for weighted servo/regulation control operation. Journal of Process Control 20 (4), 472 -480. https://doi.org/10.1016/j.jprocont.2010.01.002
Astrom, K., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14, 635-650. https://doi.org/10.1016/j.jprocont.2004.01.002
Astrom, K., Hagglund, T., 2005. Advanced PID control. ISA - The Instrumentation, Systems, and Automation Society.
Chien, I. L., Fruehauf, P. S., 1990. Consider IMC tuning to improve controller performance. Chemical Engineering Progress 86 (10), 33 - 41.
Dehghani, A., Lanzon, A., Anderson, B., 2006. H1 design to generalize internalmodel control. Automatica 42 (11), 1959 - 1968.
Grimholt, C., Skogestad, S., 2012. Optimal PI Control and Verifcation of the SIMC Tuning Rule. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00003
Horn, I. G., Arulandu, J. R., Gombas, C. J., VanAntwerp, J. G., Braatz, R. D., 1996. Improved Filter Design in Internal Model Control. Industrial & Engineering Chemistry Research 35 (10), 3437 - 3441. https://doi.org/10.1021/ie9602872
Huba, M., 2012. Setpoint Versus Disturbance Responses of the IPDT Plant. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00070
J.Shi, W.S.Lee, 2004. Set Point Response and Disturbance Rejection Tradeoff for Second-Order Plus Dead Time Processes. In: Asian Control Conference.
Kristiansson, B., Lennartson, B., 1998. Optimal PID controllers for unstable and resonant plants. In: Proc. of the IEEE Conference on Decision and Control. pp. 4380-4381.
Kurokawa, R., Sato, T., Vilanova, R., Konishi, Y., 2019. Discrete-time firstorder plus dead-time model-reference trade-off pid control design. Applied Sciences 9 (16). https://doi.org/10.3390/app9163220
Kurokawa, R., Sato, T., Vilanova, R., Konishi, Y., 2020. Design of optimal pid control with a sensitivity function for resonance phenomenon-involved second-order plus dead-time system. Journal of the Franklin Institute 357 (7), 4187-4211. https://doi.org/10.1016/j.jfranklin.2020.03.015
Leva, A., Maggio, M., 2012. Model-Based PI(D) Autotuning. In: PID Control in the Third Millennium. Lessons Learned and New Approaches. Springer. https://doi.org/10.1007/978-1-4471-2425-2_2
Mercader, P., Astrom, K. J., Baños, A., Hagglund, T., 2017a. Robust pid design based on qft and convex?concave optimization. IEEE Transactions on Control Systems Technology 25 (2), 441-452. https://doi.org/10.1109/TCST.2016.2562581
Mercader, P., Baños, A., 2017. A pi tuning rule for integrating plus dead time processes with parametric uncertainty. ISA Transactions 67, 246-255. https://doi.org/10.1016/j.isatra.2017.01.025
Mercader, P., Baños, A., Vilanova, R., 2017b. Robust proportional-integral-derivative design for processes with interval parametric uncertainty. IET Control Theory & Applications 11 (7), 016-1023. https://doi.org/10.1049/iet-cta.2016.1239
Mercader, P., Soltesz, K., Baños, A., 2017c. Robust pid design by chance-constrained optimization. Journal of the Franklin Institute 354 (18), 8217-8231. https://doi.org/10.1016/j.jfranklin.2017.10.017
Meza, G. R., Ferragud, X. B., Saez, J. S., Dur, J. M. H., 2016. Controller Tuning with Evolutionary Multiobjective Optimization: A Holistic Multiobjective Optimization Design Procedure, 1st Edition. Springer Publishing Company, Incorporated.
Middleton, R. H., Graebe, S. F., 1999. Slow stable open-loop poles: to cancel or not to cancel. Automatica 35 (5), 877-886. https://doi.org/10.1016/S0005-1098(98)00220-9
Morari, M., Zafiriou, E., 1989. Robust Process Control. Prentice-Hall International.
Panagopoulos, H., Astrom, K. J., 2000. PID control design and H1 loop shaping. International Journal of Robust and Nonlinear Control 10 (15), 1249-1261. https://doi.org/10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO;2-7
Pedret, C., Vilanova, R., Moreno, R., Serra, I., 2002. A refinement procedure for PID controller tuning. Computers & Chemical Engineering 26 (6), 903- 908. https://doi.org/10.1016/S0098-1354(02)00011-X
Rivera, D. E., Morari, M., Skogestad, S., 1986. Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development 25 (1), 252 - 265. https://doi.org/10.1021/i200032a041
Rodriguez, C., September 2020. Revisiting the simplified imc tuning rules for low-order controllers: Novel 2dof feedback controller. IET Control Theory & Applications 14, 1700-1710(10). https://doi.org/10.1049/iet-cta.2019.0821
Ruscio, D. D., 2010. On Tuning PI Controllers for Integrating Plus Time Delay Systems. Modeling, Identification and Control 31 (4), 145 - 164. https://doi.org/10.4173/mic.2010.4.3
Samad, T., Feb 2017. A survey on industry impact and challenges thereof [technical activities]. CSM 37 (1), 17-18. https://doi.org/10.1109/MCS.2016.2621438
Sanchez, H. S., Padula, F., Visioli, A., Vilanova, R., 2017a. Tuning rules for robust fopid controllers based on multi-objective optimization with fopdt models. ISA Transactions 66, 344-361. https://doi.org/10.1016/j.isatra.2016.09.021
Sanchez, H. S., Visioli, A., Vilanova, R., 2017b. Optimal nash tuning rules for robust pid controllers. Journal of the Franklin Institute 354 (10), 3945-3970.https://doi.org/10.1016/j.jfranklin.2017.03.012
Sato, T., Hayashi, I., Horibe, Y., Vilanova, R., Konishi, Y., 2019. Optimal robust pid control for first- and second-order plus dead-time processes. Applied Sciences 9 (9). https://doi.org/10.3390/app9091934
Sato, T., Tajika, H., Vilanova, R., Konishi, Y., 2018. Adaptive pid control system with assigned robust stability. IEEJ Transactions on Electrical and Electronic Engineering 13 (8), 1169-1181. https://doi.org/10.1002/tee.22680
Shamsuzzoha, M., Lee, M., 2007. IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes. Industrial & Engineering Chemistry Research 46 (7), 2077 - 2091. https://doi.org/10.1021/ie0612360
Shamsuzzohaa, M., Skogestad, S., 2010. The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning. Journal of Process Control 20 (10), 1220 - 1234. https://doi.org/10.1016/j.jprocont.2010.08.003
Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291-309. https://doi.org/10.1016/S0959-1524(02)00062-8
Skogestad, S., Grimholt, C., 2012. PID Tuning for Smooth Control. In: PID Control in the Third Millennium. Lessons Learned and New Approaches. Springer.
Skogestad, S., Postlethwaite, I., 2005. Multivariable Feedback Control. Wiley.
Smuts, J. F., 2011. Process Control for Practitioners: How to Tune PID Controllers and Optimize Control Loops. OptiControls.
Vilanova, R., 2008. IMC based Robust PID design: Tuning guidelines and automàtic tuning. Journal of Process Control 18, 61-70. https://doi.org/10.1016/j.jprocont.2007.05.004
Vilanova, R., Arrieta, O., 2007. PID design for improved disturbance attenuation: min max Sensitivity matching approach. IAENG International Journal of Applied Mathematics 37 (1).
Vilanova, R., Arrieta, O., Ponsa, P., 2018. Robust pi/pid controllers for load disturbance based on direct synthesis. ISA Transactions 81, 177-196. https://doi.org/10.1016/j.isatra.2018.07.040
Vilanova, R., Visioli, A., 2012. PID Control in the Third Millenium - Lessons Learned and New Approaches. Springer-Verlag London Limited. https://doi.org/10.1007/978-1-4471-2425-2
Visioli, A., 2001. Optimal tuning of PID controllers for integral and unstable processes. IEE Proceedings. Part D 148 (2), 180 - 184. https://doi.org/10.1049/ip-cta:20010197
Zhuang, M., Atherton, D. P., 1993. Automatic tuning of optimum PID controllers. IEE Proc. Part D 140 (3), 216-224. https://doi.org/10.1049/ip-d.1993.0030
Ziegler, J. G., Nichols, N. B., 1942. Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759-768.
[-]