- -

Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior

Mostrar el registro completo del ítem

Pacheco-Montiel, J.; Badaoui, M.; Rodríguez-Rivas, J.; Alvarado-Farías, JM.; Carranza-Castillo, O.; Ortega-González, R. (2021). Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior. Revista Iberoamericana de Automática e Informática industrial. 18(4):336-346. https://doi.org/10.4995/riai.2020.13418

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173787

Ficheros en el ítem

Metadatos del ítem

Título: Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior
Otro titulo: Optimization of the efficiency in an induction machine drive by algorithm based on the interior point method
Autor: Pacheco-Montiel, J. Badaoui, M. Rodríguez-Rivas, J.J. Alvarado-Farías, J. M. Carranza-Castillo, O. Ortega-González, R.
Fecha difusión:
Resumen:
[EN] This work optimizes the efficiency of the squirrel cage type Inverter-Induction Machine (IM) system, using an algorithm based on the Interior Point Method (IPM), where the input variables are the electromagnetic torque ...[+]


[ES] En este trabajo se realiza la optimización de la eficiencia del sistema  Inversor-Máquina de Inducción (MI) del tipo jaula de ardilla, utilizando un algoritmo basado en el Método de Punto Interior (MPI), donde las ...[+]
Palabras clave: Inverter Drives , Controlling Induction Machines , Efficiency Enhancement , Optimization Problems , Accionamientos con inversores , Control de máquinas de inducción , Mejora de la eficiencia , Problemas de optimización
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.13418
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.13418
Código del Proyecto:
info:eu-repo/grantAgreement/IPN//1995/
Agradecimientos:
Instituto Politécnico Nacional (IPN), proyecto multidisciplinario registro número 1995.
Tipo: Artículo

References

Andréasson, N., Evgrafov, A., Patriksson, M, 2020. An Introduction to Continuous Optimization Fundations & Fundamental Algorithms. Dover Publications.

Benson, H. Y., Shanno, D. F, 2014. Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput Optim Appl, 58:323-346. https://doi.org/10.1007/s10589-013-9626-8

Borisevich, A., and Schullerus, G, 2016. Energy Efficient Control of an Induction Machine Under Torque Step Changes. IEEE Trans. on Energy Conv., vol. 31, no. 4, pp. 1295-1303, December. https://doi.org/10.1109/TEC.2016.2561307 [+]
Andréasson, N., Evgrafov, A., Patriksson, M, 2020. An Introduction to Continuous Optimization Fundations & Fundamental Algorithms. Dover Publications.

Benson, H. Y., Shanno, D. F, 2014. Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput Optim Appl, 58:323-346. https://doi.org/10.1007/s10589-013-9626-8

Borisevich, A., and Schullerus, G, 2016. Energy Efficient Control of an Induction Machine Under Torque Step Changes. IEEE Trans. on Energy Conv., vol. 31, no. 4, pp. 1295-1303, December. https://doi.org/10.1109/TEC.2016.2561307

Capitanescu, F., Wehenkel, L., 2013. Experiments with the interior-point method for solving large scale optimal power flow problems. Electric Power Systems Research, vol. 95, pp. 276-283. https://doi.org/10.1016/j.epsr.2012.10.001

Casacio, L., Lyra, C., Oliveira, A.R.L, 2019. Interior point methods for power flow optimization with security constraints. Intl. Trans. in Op. Res. 26 (2019) 364-378. https://doi.org/10.1111/itor.12279

Colín, E. A. O., González, I. H. G., Rivas, J. J. R., Castillo, O. C., González, R. O., Caporal, R. M., 2017. Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3. Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 14, no. 4, pp. 446-454, Oct.-Dic. https://doi.org/10.1016/j.riai.2017.06.002

De Almeida, A. T., Ferreira, F. J. T. E., Duarte, A. Q, 2014. Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Trans. on Ind. App., vol. 50, no. 2, pp. 1274-1285, March/April. https://doi.org/10.1109/TIA.2013.2272548

Eftekhari, S. R., Davari, S. A., Naderi, P., García C., Rodriguez, J, 2020. Robust Loss Minimization for Predictive Direct Torque and Flux Control of an Induction Motor With Electrical Circuit Model. IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 5417-5426, May. https://doi.org/10.1109/TPEL.2019.2944190

Farhat, I. A., El-Hawary, M. E, 2009. Interior point methods application in optimum operational scheduling of electric power systems. IET Generation, Transmission & Distribution, vol. 3, Iss. 11, pp. 1020-1029. https://doi.org/10.1049/iet-gtd.2008.0573

IEA International Energy Agency. World Energy Outlook, 2018. IEA, Paris 2018. 01/2020. https://www.iea.org/reports/world-energy-outlook-2018.

IEC 60034-30-1, 2014. Efficiency classes of line operated AC motors (IE-code), Edition 1.0.

Mallik, S., Mallik, K., Barman, A., Maiti, D., Biswas, S. K., Deb, N. K., Basu, S, 2017. Efficiency and Cost Optimized Design of an Induction Motor Using Generic Algorithm. IEEE Trans. on Ind. Appl., vol. 64, no. 12, pp. 9854-9863, December. https://doi.org/10.1109/TIE.2017.2703687

McElveen, R., Melfi, M., McFarland, J, 2019. Improved Characterization of Polyphase Induction Motor Losses: Test Standards Must Be Modified to Improve Efficiency Optimization. IEEE Ind. Appl. Magazine., pp. 61-68, Nov./Dec. https://doi.org/10.1109/MIAS.2018.2875208

Rao, N., and Chamund, D, 2014. Calculating Power Losses in an IGBT Module. Application Note. DYNEX Power Control through Innovation.

Rathore, A. K., Holtz, J., Boller, T, 2013. Generalized Optimal Pulsewidth Modulation of Multilevel Inverters for Low-Switching-Frequency Control of Medium-Voltage High-Power Industrial AC Drives. IEEE Trans. on Ind. Electronics, vol. 60, no. 10, pp. 4215-4224, Oct. https://doi.org/10.1109/TIE.2012.2217717

Seung-Ki, S, 2011. Control of Electric Machine Drive Systems. IEEE Press & Wiley. Printed in the USA.

Salomon, C. P., Sant'Ana, W. C., Borges da Silva, L. E., Torres, G. L., Bonaldi, E. L., Olveira, L. E. L., Borges da Silva, J. G, 2015. Induction Motor Efficiency Evaluation Using a New Concept of Stator Resistance. IEEE Trans. on Inst. and Meas., vol. 64, no. 11, pp. 2908-2917, November. https://doi.org/10.1109/TIM.2015.2437632

Santos, V. S., Felipe, P. R. V, Sarduy, J. R. G., Lemozy, N. A. L., Jurado, A., Quispe, E. C, 2015. Procedure for Determining Induction Motor Efficiency Working Under Distorted Grid Voltages. IEEE Trans. on Energy Conv., vol. 30, no. 1, pp. 331-339, March. https://doi.org/10.1109/TEC.2014.2335994

Shukla, S., and Singh, B, 2017. Solar Powered Sensorless Induction Motor Drive with Improved Efficiency forWater Pumping. IET Power Electronics, vol. 11, issue 3, pp. 1-11, March. https://doi.org/10.1049/iet-pel.2017.0452

Stumper, J. F., Dötlinger, A., Kennel, R, 2013. Loss Minimization of Induction Machines in Dynamic Operation. IEEE Trans. on Energy Conv., vol. 28, no. 3, pp. 726-735, September. https://doi.org/10.1109/TEC.2013.2262048

Sul, S. K., 2011. Control of Electric Machine Drive Systems. IEEE Press-Wiley & Sons. https://doi.org/10.1002/9780470876541

Taheri, A., Rahmati, A., Kaboli, S, 2012. Efficiency Improvement in DTC of Six-Phase Induction Machine by Adaptive Gradient Descent of Flux. IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1552-1562, March. https://doi.org/10.1109/TPEL.2011.2163420

Vanderbei, R. J., Shanno, D. F, 1999. Interior-point methods for nonconvex nonlinear programming. Computational Optimization and Applications, 13, 31-252. https://doi.org/10.1023/A:1008677427361

Vural, A. M, 2015. Interior point-based slack-bus free-power flow solution for balanced islanded microgrids. Int. Trans. Electr. Energ. Syst, 26:968-992. https://doi.org/10.1002/etep.2117

Xu, W., Hu, D., Lei, G., Zhu, J, 2019. System-Level Efficiency Optimization of a Linear Induction Motor Drive System. IEEE Trans. on Electrical Machines and Systems, vol. 3, no. 3, pp. 285-291, Sept. https://doi.org/10.30941/CESTEMS.2019.00037

Xu, W., Xiao, X., Du, G., Zou, J, 2020. Comprehensive Efficiency Optimization of Linear Induction Motors for Urban Transit. IEEE Trans. on Vehicular Tech., vol. 69, no. 1, pp. 131-139, January. https://doi.org/10.1109/TVT.2019.2953956

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem