Mostrar el registro sencillo del ítem
dc.contributor.author | Pacheco-Montiel, J. | es_ES |
dc.contributor.author | Badaoui, M. | es_ES |
dc.contributor.author | Rodríguez-Rivas, J.J. | es_ES |
dc.contributor.author | Alvarado-Farías, J. M. | es_ES |
dc.contributor.author | Carranza-Castillo, O. | es_ES |
dc.contributor.author | Ortega-González, R. | es_ES |
dc.date.accessioned | 2021-10-05T07:02:41Z | |
dc.date.available | 2021-10-05T07:02:41Z | |
dc.date.issued | 2021-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/173787 | |
dc.description.abstract | [EN] This work optimizes the efficiency of the squirrel cage type Inverter-Induction Machine (IM) system, using an algorithm based on the Interior Point Method (IPM), where the input variables are the electromagnetic torque and the rotor speed at steady state,and as outputs the optimal efficiency and slip values are obtained. The optimum rotor flux value is calculated, which is used as a reference in the flux control loop, in the direct control vector method of the IM. Simulation results are obtained where the increase in efficiency is observed in low load states. The experimental installation used in the implementation of the vector control with maximum system efficiency is described, and the experimental results obtained are shown. A discussion is carried out on the results and the use of the Interior Point Optimization Method. | es_ES |
dc.description.abstract | [ES] En este trabajo se realiza la optimización de la eficiencia del sistema Inversor-Máquina de Inducción (MI) del tipo jaula de ardilla, utilizando un algoritmo basado en el Método de Punto Interior (MPI), donde las variables de entrada son el par electromagnético y la velocidad del rotor en estado estacionario, y como salidas se obtienen los valores de la eficiencia óptima y del deslizamiento. Se calcula el valor del flujo óptimo del rotor que se utiliza como referencia en el lazo de control del flujo, en el control vectorial método directo de la MI. Se obtienen resultados de simulación donde se observa el incremento de la eficiencia en estados de baja carga. Se describe la instalación experimental usada en la implementación del control vectorial con máxima eficiencia del sistema, y se muestran los resultados experimentales obtenidos. Se realiza una discusión sobre los resultados y la utilización del Método de Optimización de Punto Interior. | es_ES |
dc.description.sponsorship | Instituto Politécnico Nacional (IPN), proyecto multidisciplinario registro número 1995. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Inverter Drives | es_ES |
dc.subject | Controlling Induction Machines | es_ES |
dc.subject | Efficiency Enhancement | es_ES |
dc.subject | Optimization Problems | es_ES |
dc.subject | Accionamientos con inversores | es_ES |
dc.subject | Control de máquinas de inducción | es_ES |
dc.subject | Mejora de la eficiencia | es_ES |
dc.subject | Problemas de optimización | es_ES |
dc.title | Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior | es_ES |
dc.title.alternative | Optimization of the efficiency in an induction machine drive by algorithm based on the interior point method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2020.13418 | |
dc.relation.projectID | info:eu-repo/grantAgreement/IPN//1995/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Pacheco-Montiel, J.; Badaoui, M.; Rodríguez-Rivas, J.; Alvarado-Farías, JM.; Carranza-Castillo, O.; Ortega-González, R. (2021). Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior. Revista Iberoamericana de Automática e Informática industrial. 18(4):336-346. https://doi.org/10.4995/riai.2020.13418 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2020.13418 | es_ES |
dc.description.upvformatpinicio | 336 | es_ES |
dc.description.upvformatpfin | 346 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\13418 | es_ES |
dc.contributor.funder | Instituto Politécnico Nacional, México | es_ES |
dc.description.references | Andréasson, N., Evgrafov, A., Patriksson, M, 2020. An Introduction to Continuous Optimization Fundations & Fundamental Algorithms. Dover Publications. | es_ES |
dc.description.references | Benson, H. Y., Shanno, D. F, 2014. Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput Optim Appl, 58:323-346. https://doi.org/10.1007/s10589-013-9626-8 | es_ES |
dc.description.references | Borisevich, A., and Schullerus, G, 2016. Energy Efficient Control of an Induction Machine Under Torque Step Changes. IEEE Trans. on Energy Conv., vol. 31, no. 4, pp. 1295-1303, December. https://doi.org/10.1109/TEC.2016.2561307 | es_ES |
dc.description.references | Capitanescu, F., Wehenkel, L., 2013. Experiments with the interior-point method for solving large scale optimal power flow problems. Electric Power Systems Research, vol. 95, pp. 276-283. https://doi.org/10.1016/j.epsr.2012.10.001 | es_ES |
dc.description.references | Casacio, L., Lyra, C., Oliveira, A.R.L, 2019. Interior point methods for power flow optimization with security constraints. Intl. Trans. in Op. Res. 26 (2019) 364-378. https://doi.org/10.1111/itor.12279 | es_ES |
dc.description.references | Colín, E. A. O., González, I. H. G., Rivas, J. J. R., Castillo, O. C., González, R. O., Caporal, R. M., 2017. Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3. Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 14, no. 4, pp. 446-454, Oct.-Dic. https://doi.org/10.1016/j.riai.2017.06.002 | es_ES |
dc.description.references | De Almeida, A. T., Ferreira, F. J. T. E., Duarte, A. Q, 2014. Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Trans. on Ind. App., vol. 50, no. 2, pp. 1274-1285, March/April. https://doi.org/10.1109/TIA.2013.2272548 | es_ES |
dc.description.references | Eftekhari, S. R., Davari, S. A., Naderi, P., García C., Rodriguez, J, 2020. Robust Loss Minimization for Predictive Direct Torque and Flux Control of an Induction Motor With Electrical Circuit Model. IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 5417-5426, May. https://doi.org/10.1109/TPEL.2019.2944190 | es_ES |
dc.description.references | Farhat, I. A., El-Hawary, M. E, 2009. Interior point methods application in optimum operational scheduling of electric power systems. IET Generation, Transmission & Distribution, vol. 3, Iss. 11, pp. 1020-1029. https://doi.org/10.1049/iet-gtd.2008.0573 | es_ES |
dc.description.references | IEA International Energy Agency. World Energy Outlook, 2018. IEA, Paris 2018. 01/2020. https://www.iea.org/reports/world-energy-outlook-2018. | es_ES |
dc.description.references | IEC 60034-30-1, 2014. Efficiency classes of line operated AC motors (IE-code), Edition 1.0. | es_ES |
dc.description.references | Mallik, S., Mallik, K., Barman, A., Maiti, D., Biswas, S. K., Deb, N. K., Basu, S, 2017. Efficiency and Cost Optimized Design of an Induction Motor Using Generic Algorithm. IEEE Trans. on Ind. Appl., vol. 64, no. 12, pp. 9854-9863, December. https://doi.org/10.1109/TIE.2017.2703687 | es_ES |
dc.description.references | McElveen, R., Melfi, M., McFarland, J, 2019. Improved Characterization of Polyphase Induction Motor Losses: Test Standards Must Be Modified to Improve Efficiency Optimization. IEEE Ind. Appl. Magazine., pp. 61-68, Nov./Dec. https://doi.org/10.1109/MIAS.2018.2875208 | es_ES |
dc.description.references | Rao, N., and Chamund, D, 2014. Calculating Power Losses in an IGBT Module. Application Note. DYNEX Power Control through Innovation. | es_ES |
dc.description.references | Rathore, A. K., Holtz, J., Boller, T, 2013. Generalized Optimal Pulsewidth Modulation of Multilevel Inverters for Low-Switching-Frequency Control of Medium-Voltage High-Power Industrial AC Drives. IEEE Trans. on Ind. Electronics, vol. 60, no. 10, pp. 4215-4224, Oct. https://doi.org/10.1109/TIE.2012.2217717 | es_ES |
dc.description.references | Seung-Ki, S, 2011. Control of Electric Machine Drive Systems. IEEE Press & Wiley. Printed in the USA. | es_ES |
dc.description.references | Salomon, C. P., Sant'Ana, W. C., Borges da Silva, L. E., Torres, G. L., Bonaldi, E. L., Olveira, L. E. L., Borges da Silva, J. G, 2015. Induction Motor Efficiency Evaluation Using a New Concept of Stator Resistance. IEEE Trans. on Inst. and Meas., vol. 64, no. 11, pp. 2908-2917, November. https://doi.org/10.1109/TIM.2015.2437632 | es_ES |
dc.description.references | Santos, V. S., Felipe, P. R. V, Sarduy, J. R. G., Lemozy, N. A. L., Jurado, A., Quispe, E. C, 2015. Procedure for Determining Induction Motor Efficiency Working Under Distorted Grid Voltages. IEEE Trans. on Energy Conv., vol. 30, no. 1, pp. 331-339, March. https://doi.org/10.1109/TEC.2014.2335994 | es_ES |
dc.description.references | Shukla, S., and Singh, B, 2017. Solar Powered Sensorless Induction Motor Drive with Improved Efficiency forWater Pumping. IET Power Electronics, vol. 11, issue 3, pp. 1-11, March. https://doi.org/10.1049/iet-pel.2017.0452 | es_ES |
dc.description.references | Stumper, J. F., Dötlinger, A., Kennel, R, 2013. Loss Minimization of Induction Machines in Dynamic Operation. IEEE Trans. on Energy Conv., vol. 28, no. 3, pp. 726-735, September. https://doi.org/10.1109/TEC.2013.2262048 | es_ES |
dc.description.references | Sul, S. K., 2011. Control of Electric Machine Drive Systems. IEEE Press-Wiley & Sons. https://doi.org/10.1002/9780470876541 | es_ES |
dc.description.references | Taheri, A., Rahmati, A., Kaboli, S, 2012. Efficiency Improvement in DTC of Six-Phase Induction Machine by Adaptive Gradient Descent of Flux. IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1552-1562, March. https://doi.org/10.1109/TPEL.2011.2163420 | es_ES |
dc.description.references | Vanderbei, R. J., Shanno, D. F, 1999. Interior-point methods for nonconvex nonlinear programming. Computational Optimization and Applications, 13, 31-252. https://doi.org/10.1023/A:1008677427361 | es_ES |
dc.description.references | Vural, A. M, 2015. Interior point-based slack-bus free-power flow solution for balanced islanded microgrids. Int. Trans. Electr. Energ. Syst, 26:968-992. https://doi.org/10.1002/etep.2117 | es_ES |
dc.description.references | Xu, W., Hu, D., Lei, G., Zhu, J, 2019. System-Level Efficiency Optimization of a Linear Induction Motor Drive System. IEEE Trans. on Electrical Machines and Systems, vol. 3, no. 3, pp. 285-291, Sept. https://doi.org/10.30941/CESTEMS.2019.00037 | es_ES |
dc.description.references | Xu, W., Xiao, X., Du, G., Zou, J, 2020. Comprehensive Efficiency Optimization of Linear Induction Motors for Urban Transit. IEEE Trans. on Vehicular Tech., vol. 69, no. 1, pp. 131-139, January. https://doi.org/10.1109/TVT.2019.2953956 | es_ES |