- -

Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM

Mostrar el registro completo del ítem

Paredes, L.; Molina, M.; Serrano, B. (2021). Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM. Revista Iberoamericana de Automática e Informática industrial. 18(4):385-395. https://doi.org/10.4995/riai.2021.14813

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173790

Ficheros en el ítem

Metadatos del ítem

Título: Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM
Otro titulo: Improvement of dynamic voltage stability in a microgrid using a DSTATCOM
Autor: Paredes, L. Molina, M. Serrano, B.
Fecha difusión:
Resumen:
[EN] Presently, electric power systems based on microgrids are reaching an important position in different locations around the world. The multiple distributed generation technologies employed in modern microgrids allow a ...[+]


[ES] En la actualidad, los sistemas eléctricos de potencia basados en microrredes están alcanzando un importante posicionamiento en diferentes localidades alrededor del mundo. Las múltiples tecnologías de generación ...[+]
Palabras clave: Dynamic voltage stability , DSTATCOM , Microgrid , Dynamic loads , Induction motors , Estabilidad dinámica de tensión , Microrred , Cargas dinámicas , Motores de inducción
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.14813
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.14813
Agradecimientos:
Este trabajo ha sido desarrollado gracias a los apoyos financieros del Servicio Alemán de Intercambio Académico (Deutscher Akademischer Austauschdienst – DAAD, en alemán) y del Consejo Nacional de Investigaciones Científicas ...[+]
Tipo: Artículo

References

Afrin, N., Yang, F., Lu, J., & Islam, M. (2018). Impact of induction motor load on the dynamic voltage stability of microgrid. ANZCC 2018 - 2018 Australian and New Zealand Control Conference, 397-402. https://doi.org/10.1109/ANZCC.2018.8606599

Alaboudy, A. H. K., Zeineldin, H. H., & Kirtley, J. (2013). Simple control strategy for inverter-based distributed generator to enhance microgrid stability in the presence of induction motor loads. IET Generation, Transmission and Distribution, 7(10), 1155-1162. https://doi.org/10.1049/iet-gtd.2013.0024

Bhowmick, S. (2016). Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers. https://doi.org/10.1201/b19739 [+]
Afrin, N., Yang, F., Lu, J., & Islam, M. (2018). Impact of induction motor load on the dynamic voltage stability of microgrid. ANZCC 2018 - 2018 Australian and New Zealand Control Conference, 397-402. https://doi.org/10.1109/ANZCC.2018.8606599

Alaboudy, A. H. K., Zeineldin, H. H., & Kirtley, J. (2013). Simple control strategy for inverter-based distributed generator to enhance microgrid stability in the presence of induction motor loads. IET Generation, Transmission and Distribution, 7(10), 1155-1162. https://doi.org/10.1049/iet-gtd.2013.0024

Bhowmick, S. (2016). Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers. https://doi.org/10.1201/b19739

Cañizares, C. A. (2018). Microgrid Stability Definitions, Analysis and Modeling (IEEE).

Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. Microgrids and Active Distribution Networks. https://doi.org/10.1049/PBRN006E

Chun, L., Xie, X., & Zhonghong, W. (1998). Rule-based control for STATCOM to increase power system stability. In Power Systems Technology, Proceedings 1998 International Conference on POWERCON (pp. 372-376).

Coelho, P., Gomes, M., & Moreira, C. (2019). Microgrids Design and Implementation. https://doi.org/10.1007/978-3-319-98687-6

Farrokhabadi, M., Lagos, D., Wies, R. W., Paolone, M., Liserre, M., Meegahapola, L., … Hatziargyriou, N. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. https://doi.org/10.1109/TPWRS.2019.2925703

Freitas, W., Morelato, A., Xu, W., & Sato, F. (2005). Impacts of AC generators and DSTATCOM devices on the dynamic performance of distribution systems. IEEE Transactions on Power Delivery, 20(2 II), 1493-1501. https://doi.org/10.1109/TPWRD.2004.839181

Gonzalez-Longatt, F. M., & Rueda, J. L. (2014). PowerFactory Aplications for Power System Analysis. Springer. https://doi.org/10.1007/978-3-319-12958-7_19

Haque, M. H. (2004). Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices. IEEE Transactions on Power Systems, 19(4), 1894-1902. https://doi.org/10.1109/TPWRS.2004.836243

Hingoranl, N. G., Gyugyi, L., & El-Hawary, M. E. (1999). Understanding FACTS: Concepts and technology of flexible ac transmission systems. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. https://doi.org/10.1109/9780470546802

Hosseinzadeh, N., Khanabdal, S., Al-Jabri, Y., Al-Abri, R., Al-Hinai, A., & Banejad, M. (2019). Voltage Stability of Microgrids. In Variability, Scalability and Stability of Microgrids (pp. 327-376). https://doi.org/10.1049/PBPO139E_ch10

IEEE PES Industry Technical Support Task Force. (2018). Impact of IEEE 1547 Standard on Smart Inverters.

Jayawardena, A. V., Meegahapola, L. G., Robinson, D. A., & Perera, S. (2015). Low-voltage ride-Through characteristics of microgrids with distribution static synchronous compensator (DSTATCOM). 2015 Australasian Universities Power Engineering Conference: Challenges for Future Grids, AUPEC 2015, 1-6. https://doi.org/10.1109/AUPEC.2015.7324823

Katiraei, F., Iravani, M. R., & Lehn, P. W. (2005). Micro-grid autonomous operation during and subsequent to islanding process. IEEE Transactions on Power Delivery, 20(1), 248-257. https://doi.org/10.1109/TPWRD.2004.835051

Khadem Abbasi, A., Muatafa, M. W. B., & Mokhtar, A. S. B. (2011). Small signal stability analysis of rectifier-inverter fed induction motor drive for microgrid applications. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1015-1019. https://doi.org/10.1109/TENCON.2011.6129264

Khodaei, A. (2014). Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart GridKhodaei, A. (2014). Resiliency-Oriented Microgrid Optimal Scheduling. IEEE Transactions on Smart Grid, 5(4), 1584-1591. Https://Doi.Org/10.1109/TSG.2014.2311465, 5(4), 1584-1591. https://doi.org/10.1109/TSG.2014.2311465

Kundur, P. (1994). Power System Stability and Control. New York, US.: McGraw-Hill Professional. https://doi.org/10.1049/ep.1977.0418

Milano, F. (2005). Power System Analysis Toolbox Documentation for PSAT 2008. Power System Analysis Toolbox, 439. https://doi.org/10.1109/PES.2006.1708946

Molina, M. G. (2017). Energy Storage and Power Electronics Technologies: A Strong Combination to Empower the Transformation to the Smart Grid. Proceedings of the IEEE, 105(11), 2191-2219. https://doi.org/10.1109/JPROC.2017.2702627

Ogata, K. (2010). Ingeniería de Control Moderna. Pearson Educación.

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. https://doi.org/10.1109/TSG.2013.2295514

Paredes, L. A., Molina, M. G., & Serrano, B. R. (2020a). Modeling of DSTATCOM Devices to Improve Dynamic Voltage Stability in a Microgrid with High Penetration of Motor Loads. Revista Técnica "Energía," I(17), 32-42. https://doi.org/10.37116/revistaenergia.v17.n1.2020.400

Paredes, L. A., Molina, M. G., & Serrano, B. R. (2020b). Resilient Microgrids with FACTS Technology. In IEEE T&D PES Conference and Exposition Latin America (pp. 1-6). Montevideo - Uruguay. https://doi.org/10.1109/TDLA47668.2020.9326097

Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019a). FACTS Technology to Improve the Operation of Resilient Microgrids. In 2019 FISEIEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE) (pp. 1-7). Medellín, Colombia: IEEE. https://doi.org/10.1109/FISECIGRE48012.2019.8984960

Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019b). Nuevo Paradigma de los Sistemas Eléctricos: Generación Distribuida y Microrredes Eléctricas un Vínculo de Accesibilidad a la Electricidad en América Latina y el Caribe. ENERLAC, 3, 88-110. Retrieved from http://enerlac.olade.org/index.php/ENERLAC/article/view/94/72

Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019d). Voltage Stability Improvement with a DSTATCOM in a Microgrid Integrated by DG Solar Photovoltaic and Conventional. Revista Técnica "Energía," 16(II), 29-39. DOI: doi.org/10.37116/revistaenergia.v16.n2.2020.350

Rahim, A. H. M. A., Al-Baiyat, S. A., & Al-Maghrabi, H. M. (2002). Robust damping controller design for a static compensator. IEE Proceedings: Generation, Transmission and Distribution, 149(4), 491-496. https://doi.org/10.1049/ip-gtd:20020344

Sao, C. K., & Lehn, P. W. (2005). Autonomous Load Sharing of Voltage Source Converters. IEEE Transactions on Power Delivery, 20(2), 1009-1016. https://doi.org/10.1109/TPWRD.2004.838638

Tapia, E. A., Pinzón, J. D., & Colomé, D. G. (2019). Load Dynamic Impact on Short-Term Voltage Stability. In 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE). https://doi.org/10.1109/FISECIGRE48012.2019.8985015

Tostado, M. (2017). Técnicas de simulación de estabilidad de tensión en sistemas eléctricos de gran dimensión. U. Sevilla.

Tuffner, F. K., Schneider, K. P., Hansen, J., & Elizondo, M. A. (2019). Modeling Load Dynamics to Support Resiliency-Based Operations in Low-Inertia Microgrids. IEEE Transactions on Smart Grid, 10(3), 2726-2737. https://doi.org/10.1109/TSG.2018.2809452

Wu, D., Wu, H., & Dongt, H. (2018). Influence of induction motor starting on microgrid. Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2018-Octob, 376-381. https://doi.org/10.1109/APPEEC.2018.8566305

Xu, Yan, Dong, Z. Y., Meng, K., Yao, W. F., Zhang, R., & Wong, K. P. (2014). Multi-objective dynamic VAR planning against short-term voltage instability using a decomposition-based evolutionary algorithm. IEEE Transactions on Power Systems, 29(6), 2813-2822. https://doi.org/10.1109/TPWRS.2014.2310733

Xu, Yin, Liu, C.-C., Schneider, K., Tuffner, F., & Ton, D. (2016). Microgrids for Service Restoration to Critical Load in a Resilient Distribution System. IEEE Transactions on Smart Grid, 9(1), 1-1. https://doi.org/10.1109/TSG.2016.2593911

Yu, S., Zhang, S., Han, Y., Lu, C., Yu, Z., & Zhang, X. (2015). Fast parameter identification and modeling of electric load based on simplified composite load model. IEEE Power and Energy Society General Meeting, 2015-September, 17-21. https://doi.org/10.1109/PESGM.2015.7286063

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem