Mostrar el registro sencillo del ítem
dc.contributor.author | Paredes, L. | es_ES |
dc.contributor.author | Molina, M. | es_ES |
dc.contributor.author | Serrano, B. | es_ES |
dc.date.accessioned | 2021-10-05T07:36:41Z | |
dc.date.available | 2021-10-05T07:36:41Z | |
dc.date.issued | 2021-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/173790 | |
dc.description.abstract | [EN] Presently, electric power systems based on microgrids are reaching an important position in different locations around the world. The multiple distributed generation technologies employed in modern microgrids allow a joint operation of renewable and non-renewable energy sources with many types of loads. Nonetheless, induction motor (IM) type dynamic loads represent one of the most critical factors that make microgrid systems vulnerable to scenarios that could trigger voltage instability. This paper proposes the incorporation of FACTS (flexible ac transmission system) devices to improve the dynamic voltage stability of microgrids with high dynamic load penetration. The work focuses on the impact of including a DSTATCOM (distribution static compensator) in a microgrid with high IM type dynamic load penetration when a fault occurs that causes the microgrid isolation. Various case studies are analyzed using the CIGRÉ microgrid test system. The results show the improvements in the voltage stability of the microgrid with the coordination of distributed generation technologies and the DSTATCOM. | es_ES |
dc.description.abstract | [ES] En la actualidad, los sistemas eléctricos de potencia basados en microrredes están alcanzando un importante posicionamiento en diferentes localidades alrededor del mundo. Las múltiples tecnologías de generación distribuida empleadas en las microrredes modernas permiten una operación conjunta de fuentes de energías renovables y no renovables con múltiples tipos de cargas. No obstante, las cargas dinámicas de tipo motor de inducción (MI) representan uno de los factores más críticos que hacen que los sistemas de microrredes sean vulnerables a escenarios que podrían desencadenar en inestabilidades de tensión. En este trabajo se propone la incorporación de dispositivos FACTS (sistemas de transmisión flexibles de ac) para mejorar la estabilidad dinámica de tensión en microrredes con alta penetración de cargas dinámicas. El trabajo se enfoca en el impacto de incluir un DSTATCOM (compensador síncrono estático de distribución) en una microrred con alta penetración de carga dinámica de tipo MI cuando ocurre una falla que provoca el aislamiento operativo de la microrred. Se analizan varios estudios de casos utilizando el sistema de prueba de microrred de la CIGRÉ. Los resultados muestran las mejoras en la estabilidad dinámica de tensión de la microrred con la operación coordinada de las tecnologías de generación distribuida y el DSTATCOM. | es_ES |
dc.description.sponsorship | Este trabajo ha sido desarrollado gracias a los apoyos financieros del Servicio Alemán de Intercambio Académico (Deutscher Akademischer Austauschdienst – DAAD, en alemán) y del Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Dynamic voltage stability | es_ES |
dc.subject | DSTATCOM | es_ES |
dc.subject | Microgrid | es_ES |
dc.subject | Dynamic loads | es_ES |
dc.subject | Induction motors | es_ES |
dc.subject | Estabilidad dinámica de tensión | es_ES |
dc.subject | Microrred | es_ES |
dc.subject | Cargas dinámicas | es_ES |
dc.subject | Motores de inducción | es_ES |
dc.title | Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM | es_ES |
dc.title.alternative | Improvement of dynamic voltage stability in a microgrid using a DSTATCOM | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14813 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Paredes, L.; Molina, M.; Serrano, B. (2021). Mejora de la estabilidad dinámica de tensión en una microrred utilizando un DSTATCOM. Revista Iberoamericana de Automática e Informática industrial. 18(4):385-395. https://doi.org/10.4995/riai.2021.14813 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14813 | es_ES |
dc.description.upvformatpinicio | 385 | es_ES |
dc.description.upvformatpfin | 395 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14813 | es_ES |
dc.contributor.funder | Deutscher Akademischer Austauschdienst | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |
dc.description.references | Afrin, N., Yang, F., Lu, J., & Islam, M. (2018). Impact of induction motor load on the dynamic voltage stability of microgrid. ANZCC 2018 - 2018 Australian and New Zealand Control Conference, 397-402. https://doi.org/10.1109/ANZCC.2018.8606599 | es_ES |
dc.description.references | Alaboudy, A. H. K., Zeineldin, H. H., & Kirtley, J. (2013). Simple control strategy for inverter-based distributed generator to enhance microgrid stability in the presence of induction motor loads. IET Generation, Transmission and Distribution, 7(10), 1155-1162. https://doi.org/10.1049/iet-gtd.2013.0024 | es_ES |
dc.description.references | Bhowmick, S. (2016). Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers. https://doi.org/10.1201/b19739 | es_ES |
dc.description.references | Cañizares, C. A. (2018). Microgrid Stability Definitions, Analysis and Modeling (IEEE). | es_ES |
dc.description.references | Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. Microgrids and Active Distribution Networks. https://doi.org/10.1049/PBRN006E | es_ES |
dc.description.references | Chun, L., Xie, X., & Zhonghong, W. (1998). Rule-based control for STATCOM to increase power system stability. In Power Systems Technology, Proceedings 1998 International Conference on POWERCON (pp. 372-376). | es_ES |
dc.description.references | Coelho, P., Gomes, M., & Moreira, C. (2019). Microgrids Design and Implementation. https://doi.org/10.1007/978-3-319-98687-6 | es_ES |
dc.description.references | Farrokhabadi, M., Lagos, D., Wies, R. W., Paolone, M., Liserre, M., Meegahapola, L., … Hatziargyriou, N. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. https://doi.org/10.1109/TPWRS.2019.2925703 | es_ES |
dc.description.references | Freitas, W., Morelato, A., Xu, W., & Sato, F. (2005). Impacts of AC generators and DSTATCOM devices on the dynamic performance of distribution systems. IEEE Transactions on Power Delivery, 20(2 II), 1493-1501. https://doi.org/10.1109/TPWRD.2004.839181 | es_ES |
dc.description.references | Gonzalez-Longatt, F. M., & Rueda, J. L. (2014). PowerFactory Aplications for Power System Analysis. Springer. https://doi.org/10.1007/978-3-319-12958-7_19 | es_ES |
dc.description.references | Haque, M. H. (2004). Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices. IEEE Transactions on Power Systems, 19(4), 1894-1902. https://doi.org/10.1109/TPWRS.2004.836243 | es_ES |
dc.description.references | Hingoranl, N. G., Gyugyi, L., & El-Hawary, M. E. (1999). Understanding FACTS: Concepts and technology of flexible ac transmission systems. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. https://doi.org/10.1109/9780470546802 | es_ES |
dc.description.references | Hosseinzadeh, N., Khanabdal, S., Al-Jabri, Y., Al-Abri, R., Al-Hinai, A., & Banejad, M. (2019). Voltage Stability of Microgrids. In Variability, Scalability and Stability of Microgrids (pp. 327-376). https://doi.org/10.1049/PBPO139E_ch10 | es_ES |
dc.description.references | IEEE PES Industry Technical Support Task Force. (2018). Impact of IEEE 1547 Standard on Smart Inverters. | es_ES |
dc.description.references | Jayawardena, A. V., Meegahapola, L. G., Robinson, D. A., & Perera, S. (2015). Low-voltage ride-Through characteristics of microgrids with distribution static synchronous compensator (DSTATCOM). 2015 Australasian Universities Power Engineering Conference: Challenges for Future Grids, AUPEC 2015, 1-6. https://doi.org/10.1109/AUPEC.2015.7324823 | es_ES |
dc.description.references | Katiraei, F., Iravani, M. R., & Lehn, P. W. (2005). Micro-grid autonomous operation during and subsequent to islanding process. IEEE Transactions on Power Delivery, 20(1), 248-257. https://doi.org/10.1109/TPWRD.2004.835051 | es_ES |
dc.description.references | Khadem Abbasi, A., Muatafa, M. W. B., & Mokhtar, A. S. B. (2011). Small signal stability analysis of rectifier-inverter fed induction motor drive for microgrid applications. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1015-1019. https://doi.org/10.1109/TENCON.2011.6129264 | es_ES |
dc.description.references | Khodaei, A. (2014). Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart GridKhodaei, A. (2014). Resiliency-Oriented Microgrid Optimal Scheduling. IEEE Transactions on Smart Grid, 5(4), 1584-1591. Https://Doi.Org/10.1109/TSG.2014.2311465, 5(4), 1584-1591. https://doi.org/10.1109/TSG.2014.2311465 | es_ES |
dc.description.references | Kundur, P. (1994). Power System Stability and Control. New York, US.: McGraw-Hill Professional. https://doi.org/10.1049/ep.1977.0418 | es_ES |
dc.description.references | Milano, F. (2005). Power System Analysis Toolbox Documentation for PSAT 2008. Power System Analysis Toolbox, 439. https://doi.org/10.1109/PES.2006.1708946 | es_ES |
dc.description.references | Molina, M. G. (2017). Energy Storage and Power Electronics Technologies: A Strong Combination to Empower the Transformation to the Smart Grid. Proceedings of the IEEE, 105(11), 2191-2219. https://doi.org/10.1109/JPROC.2017.2702627 | es_ES |
dc.description.references | Ogata, K. (2010). Ingeniería de Control Moderna. Pearson Educación. | es_ES |
dc.description.references | Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. https://doi.org/10.1109/TSG.2013.2295514 | es_ES |
dc.description.references | Paredes, L. A., Molina, M. G., & Serrano, B. R. (2020a). Modeling of DSTATCOM Devices to Improve Dynamic Voltage Stability in a Microgrid with High Penetration of Motor Loads. Revista Técnica "Energía," I(17), 32-42. https://doi.org/10.37116/revistaenergia.v17.n1.2020.400 | es_ES |
dc.description.references | Paredes, L. A., Molina, M. G., & Serrano, B. R. (2020b). Resilient Microgrids with FACTS Technology. In IEEE T&D PES Conference and Exposition Latin America (pp. 1-6). Montevideo - Uruguay. https://doi.org/10.1109/TDLA47668.2020.9326097 | es_ES |
dc.description.references | Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019a). FACTS Technology to Improve the Operation of Resilient Microgrids. In 2019 FISEIEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE) (pp. 1-7). Medellín, Colombia: IEEE. https://doi.org/10.1109/FISECIGRE48012.2019.8984960 | es_ES |
dc.description.references | Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019b). Nuevo Paradigma de los Sistemas Eléctricos: Generación Distribuida y Microrredes Eléctricas un Vínculo de Accesibilidad a la Electricidad en América Latina y el Caribe. ENERLAC, 3, 88-110. Retrieved from http://enerlac.olade.org/index.php/ENERLAC/article/view/94/72 | es_ES |
dc.description.references | Paredes, L. A., Serrano, B. R., & Molina, M. G. (2019d). Voltage Stability Improvement with a DSTATCOM in a Microgrid Integrated by DG Solar Photovoltaic and Conventional. Revista Técnica "Energía," 16(II), 29-39. DOI: doi.org/10.37116/revistaenergia.v16.n2.2020.350 | es_ES |
dc.description.references | Rahim, A. H. M. A., Al-Baiyat, S. A., & Al-Maghrabi, H. M. (2002). Robust damping controller design for a static compensator. IEE Proceedings: Generation, Transmission and Distribution, 149(4), 491-496. https://doi.org/10.1049/ip-gtd:20020344 | es_ES |
dc.description.references | Sao, C. K., & Lehn, P. W. (2005). Autonomous Load Sharing of Voltage Source Converters. IEEE Transactions on Power Delivery, 20(2), 1009-1016. https://doi.org/10.1109/TPWRD.2004.838638 | es_ES |
dc.description.references | Tapia, E. A., Pinzón, J. D., & Colomé, D. G. (2019). Load Dynamic Impact on Short-Term Voltage Stability. In 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE). https://doi.org/10.1109/FISECIGRE48012.2019.8985015 | es_ES |
dc.description.references | Tostado, M. (2017). Técnicas de simulación de estabilidad de tensión en sistemas eléctricos de gran dimensión. U. Sevilla. | es_ES |
dc.description.references | Tuffner, F. K., Schneider, K. P., Hansen, J., & Elizondo, M. A. (2019). Modeling Load Dynamics to Support Resiliency-Based Operations in Low-Inertia Microgrids. IEEE Transactions on Smart Grid, 10(3), 2726-2737. https://doi.org/10.1109/TSG.2018.2809452 | es_ES |
dc.description.references | Wu, D., Wu, H., & Dongt, H. (2018). Influence of induction motor starting on microgrid. Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2018-Octob, 376-381. https://doi.org/10.1109/APPEEC.2018.8566305 | es_ES |
dc.description.references | Xu, Yan, Dong, Z. Y., Meng, K., Yao, W. F., Zhang, R., & Wong, K. P. (2014). Multi-objective dynamic VAR planning against short-term voltage instability using a decomposition-based evolutionary algorithm. IEEE Transactions on Power Systems, 29(6), 2813-2822. https://doi.org/10.1109/TPWRS.2014.2310733 | es_ES |
dc.description.references | Xu, Yin, Liu, C.-C., Schneider, K., Tuffner, F., & Ton, D. (2016). Microgrids for Service Restoration to Critical Load in a Resilient Distribution System. IEEE Transactions on Smart Grid, 9(1), 1-1. https://doi.org/10.1109/TSG.2016.2593911 | es_ES |
dc.description.references | Yu, S., Zhang, S., Han, Y., Lu, C., Yu, Z., & Zhang, X. (2015). Fast parameter identification and modeling of electric load based on simplified composite load model. IEEE Power and Energy Society General Meeting, 2015-September, 17-21. https://doi.org/10.1109/PESGM.2015.7286063 | es_ES |