Alastruey,J.,Briz,J.L.,Ibanez,P.,Vinals,V.,2006. Software demand,hardware supply. IEEE Micro 26, 72-82. https://doi.org/10.1109/MM.2006.80
arm, . Workload automation. URL: https://github.com/ARM-software/workload-automation.
Brooks, D., Martonosi, M., 2001. Dynamic thermal management for highperformance microprocessors, in: Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture, IEEE. pp. 171- 182.
[+]
Alastruey,J.,Briz,J.L.,Ibanez,P.,Vinals,V.,2006. Software demand,hardware supply. IEEE Micro 26, 72-82. https://doi.org/10.1109/MM.2006.80
arm, . Workload automation. URL: https://github.com/ARM-software/workload-automation.
Brooks, D., Martonosi, M., 2001. Dynamic thermal management for highperformance microprocessors, in: Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture, IEEE. pp. 171- 182.
Canonical, . Stress-ng. URL: https://wiki.ubuntu.com/Kernel/Reference/stress-ng.
Chen, H., Han, Y., Tang, G., Zhang, X., 2020. A dynamic control system for server processor direct liquid cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology 10, 786 - 794. https://doi.org/10.1109/TCPMT.2020.2986796
Cohen, A., Finkelstein, F., Mendelson, A., Ronen, R., Rudoy, D., 2003. On estimating optimal performance of cpu dynamic thermal management. IEEE Computer Architecture Letters 2, 6-6. https://doi.org/10.1109/L-CA.2003.5
Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R., 2012. Coscale: Coordinating cpu and memory system dvfs in server systems, in: MICRO, pp. 143-154. https://doi.org/10.1109/MICRO.2012.22
Dhodapkar, A.S., Smith, J.E., 2003. Comparing program phase detection techniques, in: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Computer Society, Washington, DC, USA. pp. 217-.
Guennebaud, G., Jacob, B., et al., . Eigen v3. URL: http://eigen.tuxfamily.org.
Hamerly, G., Perelman, E., Lau, J., Calder, B., 2005. Simpoint 3.0: Faster and moreflexibleprogramphaseanalysis. Journal of Instruction Level Parallelism 7, 1-28.
Hernandez, P., . spider. URL: ' https://github.com/Pablololo12/sPIDer.
Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M., 2006. An analysis of efficient multi-core global power management policies: Maximizing performance for a given power budget, in: MICRO, pp. 347-358. https://doi.org/10.1109/MICRO.2006.8
Kopytov, A., . Sysbench. URL: https://github.com/akopytov/sysbench.
LABS, P., . Geekbench. URL: https://www.geekbench.com/.
Leva, A., Terraneo, F., Giacomello, I., Fornaciari, W., 2018. Event-based power/ performance-aware thermal management for high-density microprocessors. IEEE Transactions on Control Systems Technology 26, 535-550. https://doi.org/10.1109/TCST.2017.2675841
López, M.G., Ponce, P., Soriano, L.A., Molina, A., Rodriguez, J.J., 2019. Mejora de la vida Útil en los módulos de electrónica de potencia de un bldcm mediante la optimización de un control difuso. Revista Iberoamericana de Automática e Informática industrial 16, 66-78. https://doi.org/10.4995/riai.2018.9078
Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17, 254-263. https://doi.org/10.4995/riai.2020.11806
Maggio, M., Hoffmann, H., Santambrogio, M.D., Agarwal, A., Leva, A., 2010. Controlling software applications via resource allocation within the heartbeats framework, in: CDC, pp. 3736-3741. https://doi.org/10.1109/CDC.2010.5717893
Mudge, T., 2001. Power: a first-class architectural design constraint. Computer 34, 52-58. doi:10.1109/2.917539. https://doi.org/10.1109/2.917539
Park, J., Lee, S., Cha, H., 2018. App-oriented thermal management of mobile devices, in: ISLPED, pp. 36:1-36:6. https://doi.org/10.1145/3218603.3218622
Pothukuchi, R.P., Ansari, A., Voulgaris, P., Torrellas, J., 2016. Using multiple input, multiple output formal control to maximize resource efficiency in architectures, in: ISCA, pp. 658-670. https://doi.org/10.1145/3007787.3001207
Pothukuchi, R.P., Pothukuchi, S.Y., Voulgaris, P.G., Torrellas, J., 2020. Control systems for computing systems: Making computers efficient with modular, coordinated, and robust control. IEEE Control Systems Magazine 40, 30-55.
Rahmani, A., Haghbayan, M., Kanduri, A., Weldezion, A.Y., Liljeberg, P., Plosila, J., Jantsch, A., Tenhunen, H., 2015. Dynamic power management for many-core platforms in the dark silicon era: A multi-objective control approach, in: ISLPED, pp. 219-224. https://doi.org/10.1109/ISLPED.2015.7273517
Rahmani, A.M., Donyanavard, B., M¨uck, T., Moazzemi, K., Jantsch, A., Mutlu, O., Dutt, N., 2018. Spectr: Formal supervisory control and coordination for many-core systems resource management, in: ASPLOS, pp. 169-183. https://doi.org/10.1145/3296957.3173199
Rajkumar, R., Lee, I., Sha, L., Stankovic, J., 2010. Cyber-physical systems: The next computing revolution, in: Design Automation Conference, pp. 731-736. https://doi.org/10.1145/1837274.1837461
Stephanopoulos, G., 1984. Chemical process control: an introduction to theory and practice.
Wang, X., 2017. Intelligent Power Allocator. Technical Report. ARM.
Xu, G., 2007. Evaluation of a liquid cooling concept for high power processors, in: Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 190-195. https://doi.org/10.1109/STHERM.2007.352422
Yueh, W., Wan, Z., Joshi, Y., Mukhopadhyay, S., 2015. Experimental characterization of in-package microfluidic cooling on a system-on-chip, in: 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 43-48. https://doi.org/10.1109/ISLPED.2015.7273488
[-]