- -

Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos

Mostrar el registro completo del ítem

Rodríguez, F.; Garrido, D.; Núñez, R.; Oggier, G.; García, G. (2021). Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos. Revista Iberoamericana de Automática e Informática industrial. 18(4):371-384. https://doi.org/10.4995/riai.2021.14866

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173801

Ficheros en el ítem

Metadatos del ítem

Título: Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos
Otro titulo: Dynamic and steady-state modeling of modular input-series-output-series connected dual active bridge converters
Autor: Rodríguez, F. Garrido, D. Núñez, R. Oggier, G. García, G.
Fecha difusión:
Resumen:
[EN] This work presents a modular DC-DC converter modeling based on the input-series-output-series connection of two cells using dual active bridge converters. This configuration is interesting in applications in which ...[+]


[ES] Este trabajo presenta el modelado de un convertidor modular CC-CC basado en la conexión entrada serie - salida serie de dos celdas con convertidores con puentes duales activos. Esta configuración resulta interesante ...[+]
Palabras clave: Average model , Small signal analysis , Series-connected DC-DC converters , Power electronics systems , Modeling and simulation , Modelo promediado , Análisis de pequeña señal , Convertidores CC-CC conectados en serie , Sistemas electrónicos de potencia , Modelado y simulación
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.14866
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.14866
Código del Proyecto:
info:eu-repo/grantAgreement/FONCyT//PICT 1663/2016/
Agradecimientos:
El presente trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SeCyT,UNRC), la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT) a través del proyecto PICT ...[+]
Tipo: Artículo

References

Bottion, A.J.B., Barbi, I., 2015. Input-series and output-series connected modular output capacitor full-bridge PWM DC-DC converter. IEEE Trans. Ind. Electron. 62, 6213-6221. https://doi.org/10.1109/TIE.2015.2424204

Briz, F., Lopez, M., Rodriguez, A., Arias, M., 2016. Modular power electronic transformers: modular multilevel converter versus cascaded H-bridge solutions. IEEE Ind. Electron. Mag. 10, 6-19. https://doi.org/10.1109/MIE.2016.2611648

Chen, W., Ruan, X., Yan, H., Tse, C.K., 2009. DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications. IEEE Trans. Power Electron. 24, 1463-1474. https://doi.org/10.1109/TPEL.2009.2012406 [+]
Bottion, A.J.B., Barbi, I., 2015. Input-series and output-series connected modular output capacitor full-bridge PWM DC-DC converter. IEEE Trans. Ind. Electron. 62, 6213-6221. https://doi.org/10.1109/TIE.2015.2424204

Briz, F., Lopez, M., Rodriguez, A., Arias, M., 2016. Modular power electronic transformers: modular multilevel converter versus cascaded H-bridge solutions. IEEE Ind. Electron. Mag. 10, 6-19. https://doi.org/10.1109/MIE.2016.2611648

Chen, W., Ruan, X., Yan, H., Tse, C.K., 2009. DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications. IEEE Trans. Power Electron. 24, 1463-1474. https://doi.org/10.1109/TPEL.2009.2012406

De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H., 1991. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27, 63-73. https://doi.org/10.1109/28.67533

Hou, N., Li, Y.W., 2019. A tunable power sharing control scheme for the output-series DAB DC-DC system with independent or common input terminals. IEEE Trans. Power Electron. 34, 9386-9391. https://doi.org/10.1109/TPEL.2019.2911059

Huang, Y., Tse, C.K., Ruan, X., 2009. General control considerations for input-series connected DC/DC converters. IEEE Trans. Circuits and Syst. I, Reg. Papers 56, 1286-1296. https://doi.org/10.1109/TCSI.2008.2008500

Huber, J.E., Kolar, J.W., 2017. Optimum number of cascaded cells for highpower medium-voltage AC-DC converters. IEEE Trans. Emerg. Sel. Topics Power Electron. 5, 213-232. https://doi.org/10.1109/JESTPE.2016.2605702

Jovcic, D., Taherbaneh, M., Taisne, J., Nguefeu, S., 2015. Offshore DC grids as an interconnection of radial systems: protection and control aspects. IEEE Trans. Smart Grid 6, 903-910. https://doi.org/10.1109/TSG.2014.2365542

Krismer, F., Kolar, J.W., 2010. Accurate power loss model derivation of a highcurrent dual active bridge converter for an automotive application. IEEE.Trans. Power Electron. 57, 881-891. https://doi.org/10.1109/TIE.2009.2025284

Lee, S., Jeung, Y., Lee, D., 2019. Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Access 7, 9989-9997. https://doi.org/10.1109/ACCESS.2018.2889345

Lian, Y., Holliday, D., Adam, G.P., Finney, S.J., 2015. Modular input-series-input-parallel output-series DC/DC converter control with fault detection and redundancy, in: 2015 IEEE Energy Conversion Congress and Exposition(ECCE), pp. 3495-3501. https://doi.org/10.1109/ECCE.2015.7310154

Liserre, M., Buticchi, G., Andresen, M., De Carne, G., Costa, L.F., Zou, Z.X., 2016. The smart transformer: impact on the electric grid and technology challenges. IEEE Ind. Electron. Mag. 10, 46-58. https://doi.org/10.1109/MIE.2016.2551418

Liu, J., Yang, J., Zhang, J., Nan, Z., Zheng, Q., 2018. Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer. IEEE Trans. Power Electron. 33, 1696-1714. https://doi.org/10.1109/TPEL.2017.2679489

Lotfi, H., Khodaei, A., 2017. AC versus DC microgrid planning. IEEE Trans.Smart Grid 8, 296-304. https://doi.org/10.1109/TSG.2015.2457910

Mueller, J.A., Kimball, J.W., 2018. An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Trans. Power Electron. 33, 9975-9988. https://doi.org/10.1109/TPEL.2018.2797966

Oggier, G., 2009. Control para minimizar las perdidas en convertidores CC-CC con puentes duales activos. Ph.D. thesis. Univ. Nac. del Sur, Fac. de Ing.. Bahıa Blanca, Argentina. Tesis de Doctorado en Control de Sistemas.

Oggier, G.G., Garc'ıa, G.O., Oliva, A.R., 2013. Analysis of the influence of switching related parameters in the DAB converter under soft-switching. Lat. Am. Appl. Res. 43, 121-129.

Paduvalli, V., Taylor, R.J., Balsara, P.T., 2017. Analysis of zeros in a boost DC-DC converter: state diagram approach. IEEE Trans. Circuits Syst. II, Exp. Briefs 64, 550-554. https://doi.org/10.1109/TCSII.2016.2585642

Pagliosa, M.A., Faust, R.G., Lazzarin, T.B., Barbi, I., 2016. Input-series and output-series connected modular single-switch flyback converter operating in the discontinuous conduction mode. IET Power Electron. 9, 1962-1970. https://doi.org/10.1049/iet-pel.2015.0935

Qin, H., Kimball, J.W., 2012. Generalized average modeling of dual active bridge DC-DC converter. IEEE Trans. Power Electron. 27, 2078-2084. https://doi.org/10.1109/TPEL.2011.2165734

Severns, R., Bloom, G., 1985. Modern DC-to-DC switchmode power converter circuits. Van Nostrand Reinhold electrical/computer science and engineering series, Van Nostrand Reinhold Co. https://doi.org/10.1007/978-94-011-8085-6

Shah, S.S., Bhattacharya, S., 2017. Large & small signal modeling of dual active bridge converter using improved first harmonic approximation, in: 2017 IEEE Applied Power Electron. Conf. and Exposition (APEC), pp. 1175-1182. https://doi.org/10.1109/APEC.2017.7930844

Soltau, N., Siddique, H.A.B., De Doncker, R.W., 2012. Comprehensive modeling and control strategies for a three-phase dual-active bridge, in: 2012 Int. Conf. on Renewable Energy Research and Appl. (ICRERA), pp. 1-6. https://doi.org/10.1109/ICRERA.2012.6477408

Vechalapu, K., Hazra, S., Raheja, U., Negi, A., Bhattacharya, S., 2017. Highspeed medium voltage

(MV) drive applications enabled by series connection of 1.7 kV SiC MOSFET devices, in: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 808-815.

Zhang, F., Yang, X., Chen, W., Wang, L., 2020. Voltage Balancing Control of Series-Connected SiC MOSFETs by Using Energy Recovery Snubber Circuits. IEEE Trans. Power Electron. 35, 1-1. https://doi.org/10.1109/TPEL.2020.2981547

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem