Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez, F. | es_ES |
dc.contributor.author | Garrido, D. | es_ES |
dc.contributor.author | Núñez, R. | es_ES |
dc.contributor.author | Oggier, G. | es_ES |
dc.contributor.author | García, G. | es_ES |
dc.date.accessioned | 2021-10-05T08:20:39Z | |
dc.date.available | 2021-10-05T08:20:39Z | |
dc.date.issued | 2021-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/173801 | |
dc.description.abstract | [EN] This work presents a modular DC-DC converter modeling based on the input-series-output-series connection of two cells using dual active bridge converters. This configuration is interesting in applications in which both ports of the converter must withstand medium to high voltages. From the waveform analysis of the main electrical variables, the averaged equations are obtained to describe the large-signal dynamics of the converter. The averaged model is linearized around an operating point of the converter, obtaining two sets of equations from which the influence of each parameter on the static and dynamic behavior of the converter is analyzed. The results allow the models obtained in the time domain to be validated, both in steady-state and transient conditions, in the full power range of the converter. | es_ES |
dc.description.abstract | [ES] Este trabajo presenta el modelado de un convertidor modular CC-CC basado en la conexión entrada serie - salida serie de dos celdas con convertidores con puentes duales activos. Esta configuración resulta interesante en aplicaciones en las cuales ambos puertos del convertidor deben soportar tensiones elevadas. A partir del análisis de las formas de onda de las principales variables eléctricas de cada una de las celdas, se obtienen las ecuaciones promediadas que permiten describir la dinámica del convertidor ante cambios significativos en las entradas de control del convertidor. El modelo promediado es linealizado entorno a un punto de funcionamiento del convertidor, obteniéndose dos sistemas de ecuaciones que permiten analizar la influencia de los parámetros constructivos de las celdas en el comportamiento estático y dinámico del convertidor. Los resultados obtenidos permiten validar en el dominio temporal los modelos obtenidos, tanto en régimen permanente como transitorio, en todo el rango de transferencia de potencia del convertidor. | es_ES |
dc.description.sponsorship | El presente trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SeCyT,UNRC), la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT) a través del proyecto PICT 1663/2016, la Red MEIHAPER CYTED y la Universidad Nacional de Rafaela (UNRaf). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Average model | es_ES |
dc.subject | Small signal analysis | es_ES |
dc.subject | Series-connected DC-DC converters | es_ES |
dc.subject | Power electronics systems | es_ES |
dc.subject | Modeling and simulation | es_ES |
dc.subject | Modelo promediado | es_ES |
dc.subject | Análisis de pequeña señal | es_ES |
dc.subject | Convertidores CC-CC conectados en serie | es_ES |
dc.subject | Sistemas electrónicos de potencia | es_ES |
dc.subject | Modelado y simulación | es_ES |
dc.title | Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos | es_ES |
dc.title.alternative | Dynamic and steady-state modeling of modular input-series-output-series connected dual active bridge converters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14866 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FONCyT//PICT 1663/2016/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Rodríguez, F.; Garrido, D.; Núñez, R.; Oggier, G.; García, G. (2021). Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos. Revista Iberoamericana de Automática e Informática industrial. 18(4):371-384. https://doi.org/10.4995/riai.2021.14866 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14866 | es_ES |
dc.description.upvformatpinicio | 371 | es_ES |
dc.description.upvformatpfin | 384 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14866 | es_ES |
dc.contributor.funder | Universidad Nacional de Río Cuarto | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.contributor.funder | CYTED Ciencia y Tecnología para el Desarrollo | es_ES |
dc.contributor.funder | Universidad Nacional de Rafaela | es_ES |
dc.description.references | Bottion, A.J.B., Barbi, I., 2015. Input-series and output-series connected modular output capacitor full-bridge PWM DC-DC converter. IEEE Trans. Ind. Electron. 62, 6213-6221. https://doi.org/10.1109/TIE.2015.2424204 | es_ES |
dc.description.references | Briz, F., Lopez, M., Rodriguez, A., Arias, M., 2016. Modular power electronic transformers: modular multilevel converter versus cascaded H-bridge solutions. IEEE Ind. Electron. Mag. 10, 6-19. https://doi.org/10.1109/MIE.2016.2611648 | es_ES |
dc.description.references | Chen, W., Ruan, X., Yan, H., Tse, C.K., 2009. DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications. IEEE Trans. Power Electron. 24, 1463-1474. https://doi.org/10.1109/TPEL.2009.2012406 | es_ES |
dc.description.references | De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H., 1991. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27, 63-73. https://doi.org/10.1109/28.67533 | es_ES |
dc.description.references | Hou, N., Li, Y.W., 2019. A tunable power sharing control scheme for the output-series DAB DC-DC system with independent or common input terminals. IEEE Trans. Power Electron. 34, 9386-9391. https://doi.org/10.1109/TPEL.2019.2911059 | es_ES |
dc.description.references | Huang, Y., Tse, C.K., Ruan, X., 2009. General control considerations for input-series connected DC/DC converters. IEEE Trans. Circuits and Syst. I, Reg. Papers 56, 1286-1296. https://doi.org/10.1109/TCSI.2008.2008500 | es_ES |
dc.description.references | Huber, J.E., Kolar, J.W., 2017. Optimum number of cascaded cells for highpower medium-voltage AC-DC converters. IEEE Trans. Emerg. Sel. Topics Power Electron. 5, 213-232. https://doi.org/10.1109/JESTPE.2016.2605702 | es_ES |
dc.description.references | Jovcic, D., Taherbaneh, M., Taisne, J., Nguefeu, S., 2015. Offshore DC grids as an interconnection of radial systems: protection and control aspects. IEEE Trans. Smart Grid 6, 903-910. https://doi.org/10.1109/TSG.2014.2365542 | es_ES |
dc.description.references | Krismer, F., Kolar, J.W., 2010. Accurate power loss model derivation of a highcurrent dual active bridge converter for an automotive application. IEEE.Trans. Power Electron. 57, 881-891. https://doi.org/10.1109/TIE.2009.2025284 | es_ES |
dc.description.references | Lee, S., Jeung, Y., Lee, D., 2019. Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Access 7, 9989-9997. https://doi.org/10.1109/ACCESS.2018.2889345 | es_ES |
dc.description.references | Lian, Y., Holliday, D., Adam, G.P., Finney, S.J., 2015. Modular input-series-input-parallel output-series DC/DC converter control with fault detection and redundancy, in: 2015 IEEE Energy Conversion Congress and Exposition(ECCE), pp. 3495-3501. https://doi.org/10.1109/ECCE.2015.7310154 | es_ES |
dc.description.references | Liserre, M., Buticchi, G., Andresen, M., De Carne, G., Costa, L.F., Zou, Z.X., 2016. The smart transformer: impact on the electric grid and technology challenges. IEEE Ind. Electron. Mag. 10, 46-58. https://doi.org/10.1109/MIE.2016.2551418 | es_ES |
dc.description.references | Liu, J., Yang, J., Zhang, J., Nan, Z., Zheng, Q., 2018. Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer. IEEE Trans. Power Electron. 33, 1696-1714. https://doi.org/10.1109/TPEL.2017.2679489 | es_ES |
dc.description.references | Lotfi, H., Khodaei, A., 2017. AC versus DC microgrid planning. IEEE Trans.Smart Grid 8, 296-304. https://doi.org/10.1109/TSG.2015.2457910 | es_ES |
dc.description.references | Mueller, J.A., Kimball, J.W., 2018. An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Trans. Power Electron. 33, 9975-9988. https://doi.org/10.1109/TPEL.2018.2797966 | es_ES |
dc.description.references | Oggier, G., 2009. Control para minimizar las perdidas en convertidores CC-CC con puentes duales activos. Ph.D. thesis. Univ. Nac. del Sur, Fac. de Ing.. Bahıa Blanca, Argentina. Tesis de Doctorado en Control de Sistemas. | es_ES |
dc.description.references | Oggier, G.G., Garc'ıa, G.O., Oliva, A.R., 2013. Analysis of the influence of switching related parameters in the DAB converter under soft-switching. Lat. Am. Appl. Res. 43, 121-129. | es_ES |
dc.description.references | Paduvalli, V., Taylor, R.J., Balsara, P.T., 2017. Analysis of zeros in a boost DC-DC converter: state diagram approach. IEEE Trans. Circuits Syst. II, Exp. Briefs 64, 550-554. https://doi.org/10.1109/TCSII.2016.2585642 | es_ES |
dc.description.references | Pagliosa, M.A., Faust, R.G., Lazzarin, T.B., Barbi, I., 2016. Input-series and output-series connected modular single-switch flyback converter operating in the discontinuous conduction mode. IET Power Electron. 9, 1962-1970. https://doi.org/10.1049/iet-pel.2015.0935 | es_ES |
dc.description.references | Qin, H., Kimball, J.W., 2012. Generalized average modeling of dual active bridge DC-DC converter. IEEE Trans. Power Electron. 27, 2078-2084. https://doi.org/10.1109/TPEL.2011.2165734 | es_ES |
dc.description.references | Severns, R., Bloom, G., 1985. Modern DC-to-DC switchmode power converter circuits. Van Nostrand Reinhold electrical/computer science and engineering series, Van Nostrand Reinhold Co. https://doi.org/10.1007/978-94-011-8085-6 | es_ES |
dc.description.references | Shah, S.S., Bhattacharya, S., 2017. Large & small signal modeling of dual active bridge converter using improved first harmonic approximation, in: 2017 IEEE Applied Power Electron. Conf. and Exposition (APEC), pp. 1175-1182. https://doi.org/10.1109/APEC.2017.7930844 | es_ES |
dc.description.references | Soltau, N., Siddique, H.A.B., De Doncker, R.W., 2012. Comprehensive modeling and control strategies for a three-phase dual-active bridge, in: 2012 Int. Conf. on Renewable Energy Research and Appl. (ICRERA), pp. 1-6. https://doi.org/10.1109/ICRERA.2012.6477408 | es_ES |
dc.description.references | Vechalapu, K., Hazra, S., Raheja, U., Negi, A., Bhattacharya, S., 2017. Highspeed medium voltage | es_ES |
dc.description.references | (MV) drive applications enabled by series connection of 1.7 kV SiC MOSFET devices, in: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 808-815. | es_ES |
dc.description.references | Zhang, F., Yang, X., Chen, W., Wang, L., 2020. Voltage Balancing Control of Series-Connected SiC MOSFETs by Using Energy Recovery Snubber Circuits. IEEE Trans. Power Electron. 35, 1-1. https://doi.org/10.1109/TPEL.2020.2981547 | es_ES |