H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, in: Turkish National Mathematics Symposium XXI (2008), 1-13.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, no. 1 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798
[+]
H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, in: Turkish National Mathematics Symposium XXI (2008), 1-13.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, no. 1 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798
L. Boxer, I. Karaca and A. Öztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl. 11, no. 2 (2011), 109-140.
L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474
O. Ege and I. Karaca, Fundamental properties of digital simplicial homology groups, American Journal of Computer Technology and Application 1 (2013), 25-41.
S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171, no. 1-3 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
S. S. Jamil and D. Ali, Digital Hurewicz theorem and digital homology theory, arxiv eprint 1902.02274v3.
T. Kaczynski, K. Mischaikow and M. Mrozek, Computing homology. Algebraic topological methods in computer science (Stanford, CA, 2001), Homology Homotopy Appl. 5, no. 2 (2003), 233-256. https://doi.org/10.4310/HHA.2003.v5.n2.a8
I. Karaca and O. Ege, Cubical homology in digital images, International Journal of Information and Computer Science, 1 (2012), 178-187.
D. W. Lee, Digital singular homology groups of digital images, Far East Journal of Mathematics 88 (2014), 39-63.
G. Lupton, J. Oprea and N. Scoville, A fundamental group for digital images, preprint.
W. S. Massey, A Basic Course in Algebraic Topology,Graduate Texts in Mathematics, 127. Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4939-9063-4
A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
[-]