- -

Digital homotopy relations and digital homology theories

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital homotopy relations and digital homology theories

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Staecker, P. Christopher es_ES
dc.date.accessioned 2021-10-06T06:23:23Z
dc.date.available 2021-10-06T06:23:23Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173894
dc.description.abstract [EN] In this paper we prove results relating to two homotopy relations and four homology theories developed in the topology of digital images.We introduce a new type of homotopy relation for digitally continuous functions which we call ``strong homotopy.'' Both digital homotopy and strong homotopy are natural digitizations of classical topological homotopy: the difference between them is analogous to the difference between digital 4-adjacency and 8-adjacency in the plane.We also consider four different digital homology theories: a simplicial homology theory by Arslan et al which is the homology of the clique complex, a singular simplicial homology theory by D. W. Lee, a cubical homology theory by Jamil and Ali, and a new kind of cubical homology for digital images with $c_1$-adjacency which is easily computed, and generalizes a construction by Karaca \& Ege. We show that the two simplicial homology theories are isomorphic to each other, but distinct from the two cubical theories.We also show that homotopic maps have the same induced homomorphisms in the cubical homology theory, and strong homotopic maps additionally have the same induced homomorphisms in the simplicial theory. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Digital homotopy es_ES
dc.subject Homology es_ES
dc.subject Cubical homology es_ES
dc.title Digital homotopy relations and digital homology theories es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.13154
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Staecker, PC. (2021). Digital homotopy relations and digital homology theories. Applied General Topology. 22(2):223-250. https://doi.org/10.4995/agt.2021.13154 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.13154 es_ES
dc.description.upvformatpinicio 223 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13154 es_ES
dc.description.references H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, in: Turkish National Mathematics Symposium XXI (2008), 1-13. es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, no. 1 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 es_ES
dc.description.references L. Boxer, I. Karaca and A. Öztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl. 11, no. 2 (2011), 109-140. es_ES
dc.description.references L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474 es_ES
dc.description.references O. Ege and I. Karaca, Fundamental properties of digital simplicial homology groups, American Journal of Computer Technology and Application 1 (2013), 25-41. es_ES
dc.description.references S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171, no. 1-3 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018 es_ES
dc.description.references A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. es_ES
dc.description.references S. S. Jamil and D. Ali, Digital Hurewicz theorem and digital homology theory, arxiv eprint 1902.02274v3. es_ES
dc.description.references T. Kaczynski, K. Mischaikow and M. Mrozek, Computing homology. Algebraic topological methods in computer science (Stanford, CA, 2001), Homology Homotopy Appl. 5, no. 2 (2003), 233-256. https://doi.org/10.4310/HHA.2003.v5.n2.a8 es_ES
dc.description.references I. Karaca and O. Ege, Cubical homology in digital images, International Journal of Information and Computer Science, 1 (2012), 178-187. es_ES
dc.description.references D. W. Lee, Digital singular homology groups of digital images, Far East Journal of Mathematics 88 (2014), 39-63. es_ES
dc.description.references G. Lupton, J. Oprea and N. Scoville, A fundamental group for digital images, preprint. es_ES
dc.description.references W. S. Massey, A Basic Course in Algebraic Topology,Graduate Texts in Mathematics, 127. Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4939-9063-4 es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem