Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, A. | es_ES |
dc.contributor.author | Kamornikov, S. F. | es_ES |
dc.contributor.author | Pedraza Aguilera, María Carmen | es_ES |
dc.contributor.author | Pérez-Calabuig, V. | es_ES |
dc.date.accessioned | 2021-11-05T13:12:13Z | |
dc.date.available | 2021-11-05T13:12:13Z | |
dc.date.issued | 2020-03-02 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176202 | |
dc.description.abstract | [EN] Let sigma = {sigma(i) : i is an element of I} be a partition of the set P of all prime numbers. A subgroup X of a finite group G is called sigma-subnormal in G if there is a chain of subgroups X = X-0 subset of X-1 subset of center dot center dot center dot subset of X-n = G where for every j = 1,..., n the subgroup X j-1 is normal in X j or X j /CoreX j ( X j-1) is a si -group for some i. I. In the special case that s is the partition of P into sets containing exactly one prime each, the sigma-subnormality reduces to the familiar case of subnormality. In this paper some sigma-subnormality criteria for subgroups of s-soluble groups, or groups in which every chief factor is a sigma(i)-group, for some sigma(i) sigma s, are showed. | es_ES |
dc.description.sponsorship | The first and third authors are supported by the grant PGC2018-095140-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades and the Agencia Estatal de Investigacion, Spain, and FEDER, European Union and Prometeo/2017/057 of Generalitat (Valencian Community, Spain). The second author was supported by the State Program of Science Researchers of the Republic of Belarus (Grant 19-54 "Convergence-2020"). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite group | es_ES |
dc.subject | Sigma-Solubility | es_ES |
dc.subject | Sigma-Nilpotency | es_ES |
dc.subject | Sigma-Subnormal subgroup | es_ES |
dc.subject | Factorised group | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On sigma-subnormality criteria in finite sigma-soluble groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-020-00824-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095140-B-I00/ES/GRUPOS: ESTRUCTURA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//Prometeo%2F2017%2F057//Grupos y semigrupos: estructura y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Kamornikov, SF.; Pedraza Aguilera, MC.; Pérez-Calabuig, V. (2020). On sigma-subnormality criteria in finite sigma-soluble groups. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-9. https://doi.org/10.1007/s13398-020-00824-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-020-00824-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\431493 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades y Agencia Estatal de Investigación, y FEDER, European Union | es_ES |
dc.description.references | Amberg, B., Franciosi, S., De Giovanni, F.: Products of Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford (1992) | es_ES |
dc.description.references | Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups, Vol. 584 of Mathematics and its Applications. Springer, New York (2006) | es_ES |
dc.description.references | Ballester-Bolinches, A., Kamornikov, S.F., Pedraza-Aguilera, M.C., Yi, X.: On -subnormal subgroups of factorised finite groups (Preprint) | es_ES |
dc.description.references | Casolo, C.: Subnormality in factorizable finite soluble groups. Arch. Math. 57, 12–13 (1991) | es_ES |
dc.description.references | Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter De Gruyter, Berlin (1992) | es_ES |
dc.description.references | Fumagalli, Francesco: On subnormality criteria for subgroups in finite groups. J. Lond. Math. Soc. 76(2), 237–252 (2007) | es_ES |
dc.description.references | Kamornikov, S.F., Shemetkova, O.L.: On $${{\cal{F}}}$$-subnormal subgroups of a finite factorised group. Probl. Phys. Math. Tech. 1, 61–63 (2018) | es_ES |
dc.description.references | Khukhro, E.I., Mazurov, V.D.: Unsolved Problems in Group Theory. The Kourovka notebook. Institut Matematiki SO RAN, Novosibirsk, No. 19 (2018) | es_ES |
dc.description.references | Lennox, J.C., Stonehewer, S.E.: Subnormal Subgroups of Groups. Clarendon Press, Oxford (1987) | es_ES |
dc.description.references | Maier, R.: Um problema da teoria dos subgrupos subnormais. Bol. Soc. Bras. Mat. 8(2), 127–130 (1977) | es_ES |
dc.description.references | Maier, R., Sidki, R.: A note on subnormality in factorizable finite groups. Arch. Math. 42, 97–101 (1984) | es_ES |
dc.description.references | Skiba, A.N.: A generalization of a Hall theorem. J. Algebra Appl. 15(4), 13 (2016) | es_ES |
dc.description.references | Skiba, A.N.: On $$\sigma $$-subnormal and $$\sigma $$-permutable subgroups of finite groups. J. Algebra 436, 1–16 (2015) | es_ES |
dc.description.references | Skiba, A.N.: On -properties of finite groups I. Probl. Phys. Math. Tech. 4, 89–96 (2014) | es_ES |
dc.description.references | Skiba, A.N.: On -properties of finite groups II. Probl. Phys. Math. Tech. 3(24), 70–83 (2015) | es_ES |
dc.description.references | Skiba, A.N.: On some arithmetic properties of finite groups. Note Mat. 36, 65–89 (2016) | es_ES |
dc.description.references | Wielandt, H.: Subnormalität in faktorisierten endlichen Grupppen. J. Algebra 69, 305–311 (1981) | es_ES |