Mostrar el registro sencillo del ítem
dc.contributor.author | Vallejo, Pedro M. | es_ES |
dc.contributor.author | Vega, Pastora | es_ES |
dc.date.accessioned | 2021-12-21T09:12:16Z | |
dc.date.available | 2021-12-21T09:12:16Z | |
dc.date.issued | 2021-12-17 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/178682 | |
dc.description.abstract | [ES] En este trabajo se aborda la integración de dos métodos o estrategias de Control Predictivo basado en Modelos, a saber: Control Predictivo basado en Modelos Borrosos (FMBPC) y Control Predictivo en Lazo Cerrado (CLP MPC). La primera de estas estrategias utiliza principios de Control Predictivo Funcional (PFC) y está enmarcada, al mismo tiempo, en el ámbito del Control Inteligente (IC). La integración tiene como principal objetivo proporcionar a la estrategia de control no lineal FMBPC un procedimiento de optimización que permita el manejo automático de restricciones en la variable de control. La solución propuesta consiste en hacer uso de una estructura complementaria de tipo CLP MPC para determinar mediante optimización, en cada instante de muestreo, los valores óptimos de un cierto término aditivo, a sumar a la ley de control FMBPC, de tal modo que se satisfagan las restricciones. El modelo de predicciones y la ley de control base necesarios para realizar los cálculos en la estructura CLP MPC son proporcionados por la estrategia FMBPC. La estrategia mixta FMBPC/CLP propuesta ha sido validada, en simulación, aplicándola al control de fangos activados en plantas de tratamiento de aguas residuales (EDAR), poniendo el foco en la imposición de restricciones a la acción de control. Los resultados obtenidos son satisfactorios, observando un buen rendimiento del algoritmo de control diseñado, al tiempo que se garantiza tanto la satisfacción de las restricciones, que era el principal objetivo, como la estabilidad del sistema en lazo cerrado. | es_ES |
dc.description.abstract | [EN] This work addresses the integration of two methods or strategies of Model-Based Predictive Control, namely: Fuzzy Model-Based Predictive Control (FMBPC) and Closed-Loop Predictive Control (CLP-MPC). The first of these strategies uses principles of Predictive Functional Control (PFC) and is framed, at the same time, in the field of Intelligent Control (IC). The main objective of the integration is to provide to the FMBPC nonlinear control strategy an optimization procedure that allows the automatic handling of constraints in the control variable. The proposed solution consists of making use of a complementary structure of the CLP-MPC type to determine by optimization, at each sampling instant, the optimal values of a certain additive term, to be added to the FMBPC control law, in such a way that they are satisfied the constraints. The prediction model and base control law necessary to perform the calculations on the CLP-MPC structure are provided by the FMBPC strategy. The proposed FMBPC/CLP mixed strategy has been validated, in simulation, applying it to the control of activated sludge processes in wastewater treatment plants (WWTP), focusing on the imposition of constraints on the control action. The results obtained are satisfactory, observing a good performance of the designed control algorithm, while guaranteeing both the satisfaction of the constraints, which was the main objective, and the stability of the closed-loop system. | es_ES |
dc.description.sponsorship | Este trabajo contó con el apoyo económico del Gobierno de España a través del proyecto MICINN PID2019-105434RB-C31 y de la Fundación Samuel Solórzano a través del proyecto FS / 20-2019. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Model-based predictive control | es_ES |
dc.subject | Fuzzy control and fuzzy systems in control | es_ES |
dc.subject | Intelligent control techniques | es_ES |
dc.subject | Control of systems with restrictions | es_ES |
dc.subject | Multivariable control | es_ES |
dc.subject | Automatic control of water treatment systems | es_ES |
dc.subject | Control predictivo basado en modelo | es_ES |
dc.subject | Control borroso y sistemas borrosos en control | es_ES |
dc.subject | Técnicas de control inteligente | es_ES |
dc.subject | Control de sistemas con restricciones | es_ES |
dc.subject | Control multivariable | es_ES |
dc.subject | Control automático de sistemas de tratamiento de aguas | es_ES |
dc.title | Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados | es_ES |
dc.title.alternative | Integration of the FMBPC strategy in a Closed-Loop Predictive Control structure. Application to the control of activated sludge | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.15793 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105434RB-C31/ES/DESARROLLO DE TECNICAS DE CONTROL DISTRIBUIDO INTELIGENTE BASADAS EN TEORIA DE JUEGOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Vallejo, PM.; Vega, P. (2021). Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados. Revista Iberoamericana de Automática e Informática industrial. 19(1):13-26. https://doi.org/10.4995/riai.2021.15793 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.15793 | es_ES |
dc.description.upvformatpinicio | 13 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\15793 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Adetola, V., & Guay, M., 2010. Integration of real-time optimization and model predictive control. Journal of Process Control, 20(2), 125-133. https://doi.org/10.1016/j.jprocont.2009.09.001 | es_ES |
dc.description.references | Al-Gherwi, W., Budman, H., Elkamel, A., 2013. A robust distributed model predictive control based on a dual-mode approach. Computers and Chemical Engineering, 50, 130-138. https://doi.org/10.1016/j.compchemeng.2012.11.002 | es_ES |
dc.description.references | Babuška, R., 1998a. Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston, MA, USA. https://doi.org/10.1007/978-94-011-4868-9_2 | es_ES |
dc.description.references | Babuška, R., 1998b. Fuzzy Modeling and Identification Toolbox (FMID)-User's Guide; Babuška, R., Delft, The Netherlands. | es_ES |
dc.description.references | Blachini, F., 1999. Set invariance in control. Automatica, 35, 1747-1767. https://doi.org/10.1016/S0005-1098(99)00113-2 | es_ES |
dc.description.references | Blažič, S., Škrjanc, I, 2007. Design and Stability Analysis of Fuzzy Model-based Predictive Control-A Case Study. J. Intell. Robot. Syst., 49, 279-292, https://doi.org/10.1007/s10846-007-9147-8 | es_ES |
dc.description.references | Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chadli, M., 2017. A new T-S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl., 88, 132-151, https://doi.org/10.1016/j.eswa.2017.06.039 | es_ES |
dc.description.references | Bououden, S., Chadli, M., Karimi, H., 2015. An ant colony optimization-based fuzzy predictive control approach for nonlinear processes. Inf. Sci., 299, 143-158, https://doi.org/10.1016/j.ins.2014.11.050 | es_ES |
dc.description.references | Camacho, E. F., Bordons, C., 1998. Model Predictive Control. Springer, Great Britain. https://doi.org/10.1007/978-1-4471-3398-8 | es_ES |
dc.description.references | El Bahja, H., 2017. Advanced control strategies based on invariance set theory and economic MPC: application to WWTP. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2017. | es_ES |
dc.description.references | El Bahja, H., S.; Vega, P.; Revollar, S.; Francisco, M., 2018a. One Layer Nonlinear Economic Closed-Loop Generalized Predictive Control for a Wastewater Treatment Plant. Applied Sciences, 8(5), 657. https://doi.org/10.3390/app8050657 | es_ES |
dc.description.references | El Bahja, H., Vega, P., Tadeo, F., & Francisco, M., 2018b. A constrained closed loop MPC based on positive invariance concept for a wastewater treatment plant. International Journal of Systems Science, 49(10), 2101-2115. https://doi.org/10.1080/00207721.2018.1484195 | es_ES |
dc.description.references | Francisco, M., Vega, P., 2006. Diseño Integrado de procesos de depuración de aguas utilizando control predictivo basado en modelos. RIAI-Revista Iberoamericana de Automática e Informática Industrial, 3(4), 88-98, ISSN 1697 7912. https://doi.org/10.1016/S1697-7912(07)70214-5 | es_ES |
dc.description.references | Gilbert, E.G., Tan, K. T., 1991. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. AC, 36(9), 1008-1020. https://doi.org/10.1109/9.83532 | es_ES |
dc.description.references | Haber, R., Rossiter, J.A., and Zabet, K.R., 2016. An Alternative for PID control: Predictive Functional Control- A Tutorial. IEEE American Control Conference (ACC), 2016 (ACC2016). Boston, MA, USA, July 06-08. https://doi.org/10.1109/ACC.2016.7526765 | es_ES |
dc.description.references | Henze, M., Grady, C. P. L. Jr, Gujer, W., Marais, G. v. R., Matsuo, T., 1987. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK. | es_ES |
dc.description.references | Limón, D., 2002. Control Predictivo de Sistemas no Lineales con Restricciones: Estabilidad y Robustez. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2002. | es_ES |
dc.description.references | Lyapunov, A.M., 1892. The General Problem of the Stability of Motion (in Russian). Ph.D. Thesis, Kharkov Mathematical Society, Kharkov, Russia. | es_ES |
dc.description.references | Lyapunov, A.M., 1992. The general problem of the stability of motion. Int. J. Control, 55, 531-534, https://doi.org/10.1080/00207179208934253 | es_ES |
dc.description.references | Maciejowski, J. M., 2002. Predictive Control with Constraints. Pearson Education Limited, Harlow, Essex, UK. | es_ES |
dc.description.references | Marchetti, A.G., Ferramosca, A. & González, A.H., 2014. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process, 24 (1) 129-145. https://doi.org/10.1016/j.jprocont.2013.11.004 | es_ES |
dc.description.references | Michalska, H., Mayne, D., 1993. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38, 1623-1633. https://doi.org/10.1109/9.262032 | es_ES |
dc.description.references | Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H., 2004. Effective Optimization for Fuzzy Model Predictive Control. IEEE Trans. Fuzzy Syst., 12, 661-675, https://doi.org/10.1109/TFUZZ.2004.834812 | es_ES |
dc.description.references | Moreno, R., 1994. Estimación de Estados y Control Predictivo de Proceso de Fangos Activados. Tesis Doctoral. Facultat de Ciències de la Universitat Autònoma de Barcelona (Spain). | es_ES |
dc.description.references | Ramírez, K. J. , Gómez, L. M., Álvarez, H., 2014. Dual mode nonlinear model based predictive control with guaranteed stability. Ingeniería y Competitividad, 16(1), 23-34. https://doi.org/10.25100/iyc.v16i1.3710 | es_ES |
dc.description.references | Richalet, J., 1993. Industrial application of model based predictive control. Automatica, 29 (5), 1251-1274. https://doi.org/10.1016/0005-1098(93)90049-Y | es_ES |
dc.description.references | Richalet, J., O'Donovan, D., 2009. Predictive Functional Control. Principles and Industrial Applications. Springer, London, UK. https://doi.org/10.1007/978-1-84882-493-5 | es_ES |
dc.description.references | Rossiter, J. A., 2003. Model-Based Predictive Control: A Practical Approach. CRC Press LLC, Boca Raton, Florida, EEUU. | es_ES |
dc.description.references | Roubos, J., Mollov, S., Babuska, R., Verbruggen, H., 1999. Fuzzy model-based predictive control using Takagi-Sugeno models. Int. J. Approx. Reason., 22, 3-30, https://doi.org/10.1016/S0888-613X(99)00020-1 | es_ES |
dc.description.references | Shariati, S., Noske, R., Brockhinke, A., Abel, D., 2015. Model predictive control of combustion instabilities using Closed-loop Paradigm with an incorporated Padé approximation of a phase shifter. 2015 European Control Conference (ECC). July 15-17. Linz, Austria. https://doi.org/10.1109/ECC.2015.7330601 | es_ES |
dc.description.references | Škrjanc, I., Matko, D., 2000. Predictive functional control based on fuzzy model for heat exchanger pilot plant. IEEE Transactions on Fuzzy Systems, 8 (6), 705-712. https://doi.org/10.1109/91.890329 | es_ES |
dc.description.references | Škrjanc, I., Blažič, S., 2016. Fuzzy Model-based Control - Predictive and Adaptive Approaches. In: Angelov, Plamen (Ed.), Handbook on Computational Intelligence. Vol. I. World Scientific, New Jersey, USA, Ch. 6, pp. 209-240. https://doi.org/10.1142/9789814675017_0006 | es_ES |
dc.description.references | Sorcia Vázquez, F. D. J., Garcia Beltran, C. D., Valencia Palomo, G., Guerrero Ramírez, G., Adam Medina, M., Escobar Jiménez, R., 2015. Control Predictivo Distribuido Óptimo Aplicado al Control de Nivel de un Proceso de Cuatro Tanques Acoplados. Revista Iberoamericana de Automática e Informática Industrial, 12, 365-375. https://doi.org/10.1016/j.riai.2015.07.002 | es_ES |
dc.description.references | Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and its Application to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 15 (1), 116 132. https://doi.org/10.1109/TSMC.1985.6313399 | es_ES |
dc.description.references | Vallejo, P. M., Vega, P., 2019. Analytical Fuzzy Predictive Control Applied to Wastewater Treatment Biological Processes. Complex., 2019, 5720185, https://doi.org/10.1155/2019/5720185 | es_ES |
dc.description.references | Vallejo, P. M., Vega, P., 2021. Practical Computational Approach for the Stability Analysis of Fuzzy Model-Based Predictive Control of Substrate and Biomass in Activated Sludge Processes. Processes, 9(3), 531. https://doi.org/10.3390/pr9030531 | es_ES |
dc.description.references | Zadeh, Lotfi A., 1990. Fuzzy Sets and Systems. International Journal of General Systems, 17 (2), 129-138. https://doi.org/10.1080/03081079008935104 | es_ES |