- -

Método de error de Bellman con ponderación de volumen para mallado adaptativo en programación dinámica aproximada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Método de error de Bellman con ponderación de volumen para mallado adaptativo en programación dinámica aproximada

Mostrar el registro completo del ítem

Armesto, L.; Sala, A. (2021). Método de error de Bellman con ponderación de volumen para mallado adaptativo en programación dinámica aproximada. Revista Iberoamericana de Automática e Informática industrial. 19(1):37-47. https://doi.org/10.4995/riai.2021.15698

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178687

Ficheros en el ítem

Metadatos del ítem

Título: Método de error de Bellman con ponderación de volumen para mallado adaptativo en programación dinámica aproximada
Otro titulo: Volume-weighted Bellman error method for adaptive meshing in approximate dynamic programming
Autor: Armesto, Leopoldo Sala, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Optimal control and reinforcement learning have an associate “value function” which must be suitably approximated. Value function approximation problems usually have different precision requirements in different regions ...[+]


[ES] El control óptimo y aprendizaje por refuerzo lleva asociada una "función de valor'' que debe ser adecuadamente aproximada. Estos problemas de aproximar funciones de valor tienen, usualmente, diferentes requerimientos ...[+]
Palabras clave: Control inteligente , Programación Dinámica Aproximada , Control Óptimo , Aprendizaje , Intelligent control , Approximate dynamic programming , Optimal control , Neural learning
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.15698
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.15698
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//PID2020-116585GB-I00/
Agradecimientos:
Este artículo ha sido financiado por la Agencia Española de Investigación mediante el proyecto del Plan Nacional PID2020-116585GB-I00.
Tipo: Artículo

References

Albertos, P., Sala, A., 2006. Multivariable control systems: an engineering approach. Springer, London, U.K.

Allgower, F., Zheng, A., 2012. Nonlinear model predictive control.

Antos, A., Szepesvári, C., Munos, R., 2008. Learning near optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71 (1), 89-129. https://doi.org/10.1007/s10994-007-5038-2 [+]
Albertos, P., Sala, A., 2006. Multivariable control systems: an engineering approach. Springer, London, U.K.

Allgower, F., Zheng, A., 2012. Nonlinear model predictive control.

Antos, A., Szepesvári, C., Munos, R., 2008. Learning near optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71 (1), 89-129. https://doi.org/10.1007/s10994-007-5038-2

Ariño, C., Pérez, E., Querol, A., Sala, A., 2014. Model predictive control for discrete fuzzy systems via iterative quadratic programming. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 2288-2293. https://doi.org/10.1109/FUZZ-IEEE.2014.6891633

Ariño, C., Pérez, E., Sala, A., 2010. Guaranteed cost control analysis and iterative design for constrained takagi-sugeno systems. Engineering Applications of Artificial Intelligence 23 (8), 1420-1427. https://doi.org/10.1016/j.engappai.2010.03.004

Armesto, L., Girbés, V., Sala, A., Zima, M., Smídl, V., 2015. Duality-based nonlinear quadratic control: Application to mobile robot trajectory-following. IEEE Transactions on Control Systems Technology 23 (4), 1494-1504. https://doi.org/10.1109/TCST.2014.2377631

Athans, M., Falb, P. L., 2013. Optimal control: an introduction to the theory and its applications. Courier Corporation.

Bertsekas, D. P., 2018. Abstract dynamic programming. Athena Scientific.

Bertsekas, D. P., Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA, USA.

Busoniu, L., Babuska, R., De Schutter, B., Ernst, D., 2010. Reinforcement learning and dynamic programming using function approximators. CRC press, Boca Raton, FL, USA.

Busoniu, L., Ernst, D., De Schutter, B., Babuska, R., 2010. Approximate dynamic programming with a fuzzy parameterization. Automatica 46 (5), 804-814. https://doi.org/10.1016/j.automatica.2010.02.006

Camacho, E. F., Bordons, C., 2010. Control predictivo: Pasado, presente y futuro. Revista Iberoamericana de Automática e Informática Industrial 1 (3), 5-28.

De Farias, D. P., Van Roy, B., 2003. The linear programming approach to approximate dynamic programming. Operations research 51 (6), 850-865. https://doi.org/10.1287/opre.51.6.850.24925

Deisenroth, M. P., Neumann, G., Peters, J., et al., 2013. A survey on policy search for robotics. Foundations and Trends in Robotics 2 (1-2), 1-142. https://doi.org/10.1561/2300000021

Díaz, H., Armesto, L., Sala, A., 2019. Metodología de programación dinámica aproximada para control óptimo basada en datos. Revista Iberoamericana de Automática e Informática industrial 16 (3), 273-283. https://doi.org/10.4995/riai.2019.10379

Díaz, H., Armesto, L., Sala, A., 3 2020. Fitted Q-function control methodology based on takagi-sugeno systems. IEEE Transactions on Control Systems Technology 28 (2), 477-488. https://doi.org/10.1109/TCST.2018.2885689

Díaz, H., Sala, A., Armesto, L., 2020. A linear programming methodology for approximate dynamic programming. International Journal of Applied Mathematics and Computer Science 30 (2).

Duarte-Mermoud, M., Milla, F., 2018. Estabilizador de sistemas de potencia usando control predictivo basado en modelo. Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2018.10056

Fairbank, M., Alonso, E., 6 2012. The divergence of reinforcement learning algorithms with value-iteration and function approximation. In: The 2012 International Joint Conference on Neural Networks (IJCNN). pp. 1-8. https://doi.org/10.1109/IJCNN.2012.6252792

Grüne, L., 1997. An adaptive grid scheme for the discrete hamilton-jacobibellman equation. Numerische Mathematik 75, 319-337. https://doi.org/10.1007/s002110050241

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5), 359 - 366. https://doi.org/10.1016/0893-6080(89)90020-8

Inc, T. M., 2021. Matlab delaunay documentation. URL: https://www.mathworks.com/help/matlab/ref/delaunay.html

Lewis, F. L., Liu, D., 2013. Reinforcement learning and approximate dynamic programming for feedback control. Wiley, Hoboken, NJ, USA.

https://doi.org/10.1002/9781118453988

Lewis, F. L., Vrabie, D., 2009. Reinforcement learning and adaptive dynamic programming for feedback control. Circuits and Systems Magazine, IEEE 9 (3), 32-50. https://doi.org/10.1109/MCAS.2009.933854

Li, W., Todorov, E., 2007. Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. International Journal of Control 80 (9), 1439-1453. https://doi.org/10.1080/00207170701364913

Liberzon, D., 2011. Calculus of variations and optimal control theory: a concise introduction. Princeton university press. https://doi.org/10.2307/j.ctvcm4g0s

Munos, R., Moore, A., 2002. Variable resolution discretization in optimal control. Machine learning 49 (2-3), 291-323. https://doi.org/10.1023/A:1017992615625

Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial.

Santos, M., 2011. Un enfoque aplicado del control inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 283-296. https://doi.org/10.1016/j.riai.2011.09.016

Sherstov, A. A., Stone, P., 2005. Function approximation via tile coding: Automating parameter choice. In: International Symposium on Abstraction, Reformulation, and Approximation. Springer, pp. 194-205. https://doi.org/10.1007/11527862_14

Sutton, R. S., Barto, A. G., 1998. Reinforcement learning: An introduction. Vol. 1. MIT press Cambridge.

Ziogou, C., Papadopoulou, S., Georgiadis, M. C., Voutetakis, S., 2013. On-line nonlinear model predictive control of a pem fuel cell system. Journal of Process Control 23 (4), 483-492. https://doi.org/10.1016/j.jprocont.2013.01.011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem