- -

Análisis del desempeño de un control PID de orden fraccional en un robot móvil diferencial

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis del desempeño de un control PID de orden fraccional en un robot móvil diferencial

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vázquez, Ulises es_ES
dc.contributor.author González-Sierra, Jaime es_ES
dc.contributor.author Fernández-Anaya, Guillermo es_ES
dc.contributor.author Hernández-Martínez, Eduardo Gamaliel es_ES
dc.date.accessioned 2021-12-21T10:49:31Z
dc.date.available 2021-12-21T10:49:31Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178694
dc.description.abstract [EN] This work deals with the tracking trajectory problem for a differential-drive mobile robot taking into account a dynamic extension from the kinematic model and, controlling a front point located at a certain distance perpendicular to the mid-axis of the wheels. Two controls are proposed, a PID fractional order controller (PIδDµ) and a PD fractional order controller (PDµ), both based on the tracking errors. The proposed controllers are obtained by means of the input-output linearization technique. On the other hand, the controller fractional terms are based on the Caputo’s operator. Numerical simulations with different fractional orders are presented and compared with the integer order PID controller, showing the variations that occurred when changing only the controller order. es_ES
dc.description.abstract [ES] Este trabajo aborda el problema de seguimiento de trayectorias de un robot móvil tipo diferencial considerando una extensión dinámica del modelo cinemático y, controlando un punto frontal situado a una cierta distancia perpendicular al eje medio de las ruedas. Se proponen dos tipos de controladores, un controlador PID de orden fraccionario (PIdeltaDmu) y un controlador PD fraccionario (PDmu), ambos basados en errores de seguimiento. Los controladores propuestos se obtienen empleando la técnica de linealización entrada-salida. Por otra parte, los términos fraccionarios del controlador se basan en el operador de Caputo. Se presentan simulaciones numéricas con diferentes órdenes fraccionarios y se comparan con el controlador PID de orden entero, mostrando las variaciones ocurridas al cambiar únicamente el orden del controlador. es_ES
dc.description.sponsorship División de Investigación y Posgrado (DINVP) de la Universidad Iberoamericana es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Fractional control es_ES
dc.subject Differential-drive robot es_ES
dc.subject Tracking control es_ES
dc.subject PID Control es_ES
dc.subject Control fraccionario es_ES
dc.subject Robot diferencial es_ES
dc.subject Control de seguimiento es_ES
dc.subject Control PID es_ES
dc.title Análisis del desempeño de un control PID de orden fraccional en un robot móvil diferencial es_ES
dc.title.alternative Performance analysis of a PID fractional order control in a differential mobile robot es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.15036
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vázquez, U.; González-Sierra, J.; Fernández-Anaya, G.; Hernández-Martínez, EG. (2021). Análisis del desempeño de un control PID de orden fraccional en un robot móvil diferencial. Revista Iberoamericana de Automática e Informática industrial. 19(1):74-83. https://doi.org/10.4995/riai.2021.15036 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.15036 es_ES
dc.description.upvformatpinicio 74 es_ES
dc.description.upvformatpfin 83 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\15036 es_ES
dc.description.references Al-Mayyahi, A., Wang, W., Birch, P., 2016. Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle. Journal of Control, Automation and Electrical Systems 27 (1), 29-42. https://doi.org/10.1007/s40313-015-0214-2 es_ES
dc.description.references Betourne, A., Campion, G., 1996. Dynamic modelling and control design of a class of omnidirectional mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation 3, 2810-2815. es_ES
dc.description.references Buslowicz, M., 2012. Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders. Bulletin of the Polish Academy of Sciences. Technical Sciences 60 (2), 279-284. https://doi.org/10.2478/v10175-012-0037-2 es_ES
dc.description.references Buslowicz, M., 2013. Frequency domain method for stability analysis of linear continuous-time state-space systems with double fractional orders. In Advances in the Theory and Applications of Non-integer Order Systems, Springer, Heidelberg, 31-39. https://doi.org/10.1007/978-3-319-00933-9_3 es_ES
dc.description.references Campion, G., Bastin, G., Dandrea-Novel, B., 1996. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE transactions on robotics and automation 12 (1), 47-62. https://doi.org/10.1109/70.481750 es_ES
dc.description.references Contreras, J., Herrera, D., Toibero, J., Carelli, R., 2017. Controllers design for differential drive mobile robots based on extended kinematic modeling. In 2017 European Conference on Mobile Robots, 1-6. es_ES
dc.description.references Fierro, R., Lewis, F., 1998. Control of a nonholonomic mobile robot using neural networks. IEEE transactions on neural networks 9 (4), 589-600. https://doi.org/10.1109/72.701173 es_ES
dc.description.references Kanjanawanishkul, K., Zell, A., 2009. Path following for an omnidirectional mobile robot based on model predictive control. In 2009 IEEE International Conference on Robotics and Automation, 3341-3346. https://doi.org/10.1109/ROBOT.2009.5152217 es_ES
dc.description.references Khalil, H., Grizzle, J., 2002. Nonlinear systems. Upper Saddle River, NJ: Prentice hall 3. es_ES
dc.description.references Martínez, E., Ríos, H., Mera, M., Gonzalez-Sierra, J., 2019. A robust tracking control for unicycle mobile robots: An attractive ellipsoid approach. In 2019 IEEE 58th Conference on Decision and Control (CDC), 5799-5804. https://doi.org/10.1109/CDC40024.2019.9029954 es_ES
dc.description.references Matignon, D., 1996. Stability results for fractional differential equations with applications to control processing. In IMACS Multiconference on Computational engineering in systems applications 2 (1), 963-968. es_ES
dc.description.references Matignon, D., 1998. Stability properties for generalized fractional differential systems. In ESAIM: Proceedings 5, 145-158. https://doi.org/10.1051/proc:1998004 es_ES
dc.description.references Miller, K., Ross, B., 1993. An introduction to the fractional calculus and fractional differential equations. es_ES
dc.description.references Orman, K., Basci, A., Derdiyok, A., 2016. Speed and direction angle control of four wheel drive skid-steered mobile robot by using fractional order pi controller. Elektronika ir Elektrotechnika 22 (5), 14-19. https://doi.org/10.5755/j01.eie.22.5.16337 es_ES
dc.description.references Ovalle, L., Ríos, H., Llama, M., Dzul, V. S. A., 2019. Omnidirectional mobile robot robust tracking: Sliding-mode output-based control approaches. Control Engineering Practice 85, 50-58. https://doi.org/10.1016/j.conengprac.2019.01.002 es_ES
dc.description.references Park, B., Yoo, S., Park, J., Choi, Y., 2008. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology 17 (1), 207-214. https://doi.org/10.1109/TCST.2008.922584 es_ES
dc.description.references Petrás, I., 2008. Stability of fractional-order systems with rational orders. Fractional Calculus and Applied Sciences 10. es_ES
dc.description.references Petrás, I., 2011. Fractional-order nonlinear systems: Modeling, analysis and simulation. Nonlinear Physical Science Book Series, Springer. https://doi.org/10.1007/978-3-642-18101-6 es_ES
dc.description.references Petrás, I., Dorcák, L., 1999. The frequency method for stability investigation of fractional control systems. J. of SACTA 2 (1-2), 75-85. es_ES
dc.description.references Podlubny, I., 1998. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 340. es_ES
dc.description.references Radwan, A., Soliman, A., Elwakil, A., Sedeek, A., 2009. On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals 40 (5), 2317-2328. https://doi.org/10.1016/j.chaos.2007.10.033 es_ES
dc.description.references Rasheed, L., Al-Araji, A., 2017. A cognitive nonlinear fractional order pid neural controller design for wheeled mobile robot based on bacterial foraging optimization algorithm. Engineering and Technology Journal 35 (3), 289-300. es_ES
dc.description.references Rodriguez-Cortes, H., Aranda-Bricaire, E., 2007. Observer based trajectory tracking for a wheeled mobile robot. In 2007 American Conference Control, 991-996. https://doi.org/10.1109/ACC.2007.4282706 es_ES
dc.description.references Rojas-Moreno, A., Perez-Valenzuela, G., 2017. Fractional order tracking control of a wheeled mobile robot. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing, 1-4. https://doi.org/10.1109/INTERCON.2017.8079683 es_ES
dc.description.references Sabatier, J., Moze, M., Farges, C., 2010. Lmi stability conditions for fractional order systems. Computers & Mathematics with Applications 59 (5), 1594-1609. https://doi.org/10.1016/j.camwa.2009.08.003 es_ES
dc.description.references Siegwart, R., Nourbakhsh, I., Scaramuzza, D., 2011. Introduction to autonomous mobile robots. MIT press. es_ES
dc.description.references Sira-Ramírez, H., López-Uribe, C., Velasco-Villa, M., 2013. Linear observer-based active disturbance rejection control of the omnidirectional mobile robot. Asian Journal of Control 15 (1), 51-63. https://doi.org/10.1002/asjc.523 es_ES
dc.description.references Tawfik, M., Abdulwahb, E., Swadi, S., 2014. Trajectory tracking control for a wheeled mobile robot using fractional order piadb controller. Al-Khwarizmi Engineering Journal 10 (3), 39-52. es_ES
dc.description.references Tepljakov, A., 2017. Fractional-order modeling and control of dynamic systems; fomcon: Fractional-order modeling and control toolbox. Springer Theses, 107--129. https://doi.org/10.1007/978-3-319-52950-9 es_ES
dc.description.references Tepljakov, A., Petlenkov, E., Belikov, J., Finajev, J., 2013. Fractional-order controller design and digital implementation using fomcon toolbox for matlab. IEEE Conference on Computer Aided Control System Design, 340--345. https://doi.org/10.1109/CACSD.2013.6663486 es_ES
dc.description.references Valerio, D., Costa, J. D., 2013. An introduction to fractional control. IET 91, 32-208. es_ES
dc.description.references Vázquez, J., Velasco-Villa, M., 2008. Path-tracking dynamic model based control of an omnidirectional mobile robot. IFAC Proceedings Volumes 41 (2), 5365-5370. https://doi.org/10.3182/20080706-5-KR-1001.00904 es_ES
dc.description.references Yang, H., Fan, X., Shi, P., Hua, C., 2015. Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint. IEEE Transactions on Control Systems Technology 24 (2), 741-746. https://doi.org/10.1109/TCST.2015.2457877 es_ES
dc.description.references Zhang, L., Liu, L., Zhang, S., 2020. Design, implementation, and validation of robust fractional-order pd controller for wheeled mobile robot trajectory tracking. Complexity 2020, 1-12. https://doi.org/10.1155/2020/9523549 es_ES
dc.description.references Zhao, Y., Chen, N., Tai, Y., 2016. Trajectory tracking control of wheeled mobile robot based on fractional order backstepping. In 2016 Chinese Control and Decision Conference, 6730-6734. https://doi.org/10.1109/CCDC.2016.7532208 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem