- -

Modelado de un AGV híbrido triciclo-diferencial

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado de un AGV híbrido triciclo-diferencial

Mostrar el registro completo del ítem

Sánchez, R.; Sierra-García, JE.; Santos, M. (2021). Modelado de un AGV híbrido triciclo-diferencial. Revista Iberoamericana de Automática e Informática industrial. 19(1):84-95. https://doi.org/10.4995/riai.2021.14622

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178696

Ficheros en el ítem

Metadatos del ítem

Título: Modelado de un AGV híbrido triciclo-diferencial
Otro titulo: Modelling of a hybrid differential-tricycle AGV
Autor: Sánchez, Roberto Sierra-García, Jesús Enrique Santos, Matilde
Fecha difusión:
Resumen:
[EN] In the industrial field, Automatic Guided Vehicles (AGV) are frequently used for the transport of goods, usually replacing manual means of transport or conveyor belts, to reduce operating costs and human errors in ...[+]


[ES] En el ámbito industrial se utilizan con frecuencia Vehículos de Guiado Automático (AGV) para el transporte de mercancía puntual, normalmente sustituyendo a los medios de transporte manuales o a las cintas transportadoras, ...[+]
Palabras clave: Modelado y simulación , AGV , Triciclo , Diferencial , Modelo Dinámico , Cinemática , Robots Autónomos , Modelling and simulation , Tricycle , Differential , Dynamic model , Kinematics , Autonomous Robots
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.14622
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.14622
Tipo: Artículo

References

Abderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., & Bouamrane, K. (2020). Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints. Energies, 13(18), 4948. https://doi.org/10.3390/en13184948

ASTI MOBILE ROBOTICS, S. (2021). ASTI - Mobile Robotics. Astimobilerobotics.com. Retrieved 12 February 2021, from https://www.astimobilerobotics.com/.

Bi, Z. M., Lang, S. Y., & Wang, L. (2008). Improved control and simulation models of a tricycle collaborative robot. Journal of Intelligent Manufacturing, 19(6), 715-722. https://doi.org/10.1007/s10845-008-0122-4 [+]
Abderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., & Bouamrane, K. (2020). Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints. Energies, 13(18), 4948. https://doi.org/10.3390/en13184948

ASTI MOBILE ROBOTICS, S. (2021). ASTI - Mobile Robotics. Astimobilerobotics.com. Retrieved 12 February 2021, from https://www.astimobilerobotics.com/.

Bi, Z. M., Lang, S. Y., & Wang, L. (2008). Improved control and simulation models of a tricycle collaborative robot. Journal of Intelligent Manufacturing, 19(6), 715-722. https://doi.org/10.1007/s10845-008-0122-4

Belman-López, C. E., Jiménez-García, J. A., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 17(4), 432-447. https://doi.org/10.4995/riai.2020.12579

Bonilla, I., Reyes, F., & Mendoza, M. (2005). Modelling and simulation of a wheeled mobile robot in configuration classical tricycle. In 5th WSEAS International Conference on Instrumentation, Measurement, Control, Circuits and Systems. Cancún, México.

Espinosa, F., Santos, C., & Sierra-García, J. E. (2021). Transporte multi-AGV de una carga: estado del arte y propuesta centralizada. Revista Iberoamericana de Automática e Informática industrial, 18(1), 82-91. https://doi.org/10.4995/riai.2020.12846

Galasso, F., Rizzini, D. L., Oleari, F., & Caselli, S. (2019). Efficient calibration of four wheel industrial AGVs. Robotics and Computer-Integrated Manufacturing, 57, 116-128. https://doi.org/10.1016/j.rcim.2018.11.005

García, J. M., Valero, A., & Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial, 17(2), 202-214. https://doi.org/10.4995/riai.2020.12308

Guney, M. A., & Raptis, I. (2020). Dynamic prioritized motion coordination of multi-AGV systems. Robotics and Autonomous Systems, 103534. https://doi.org/10.1016/j.robot.2020.103534

Han, K., Choi, M., & Choi, S. B. (2018). Estimation of the tire cornering stiffness as a road surface classification indicator using understeering characteristics. IEEE Transactions on Vehicular Technology, 67(8), 6851-6860. https://doi.org/10.1109/TVT.2018.2820094

Landau, L. D., & Lifshitz, E. M. (2013). Course of theoretical physics. Elsevier.

Li, G., Lin, R., Li, M., Sun, R., & Piao, S. (2019). A master-slave separate parallel intelligent mobile robot used for autonomous pallet transportation. Applied Sciences, 9(3), 368. https://doi.org/10.3390/app9030368

Markets and markets 2021. (https://www.marketsandmarkets.com/MarketReports/automated-guided-vehicle-market-27462395.html)

Madrigal Moreno, S. A., & Muñoz Ceballos, N. D. (2019). Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117-137. https://doi.org/10.33571/rpolitec.v15n28a11

Niestrój, R., Rogala, T., & Skarka, W. (2020). An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack. Energies, 13(13), 3435. https://doi.org/10.3390/en13133435

Nguyen, H. H., Nguyen, T. T., Nguyen, T. T., & Phan, H. L. (2020, December). Kinematic Model Reference Adaptive Controller for a Lurking Type Automated Guided Vehicle using Traction Drive Unit. In 2020 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 108-112). IEEE.

Sierra, J. E., & Santos, M. (2018). Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing, 271, 70-83. https://doi.org/10.1016/j.neucom.2016.11.099

Sierra-García, J. E., & Santos, M. (2020a). Mechatronic modelling of industrial AGVs: A complex system architecture. Complexity, Article ID 6687816, 2020. https://doi.org/10.1155/2020/6687816

Sierra-García, J. E., & Santos, M. (2020b, September). Control of Industrial AGV Based on Reinforcement Learning. In International Workshop or Soft Computing Models in Industrial and Environmental Applications (pp. 647-656). Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_62

Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2019). The impact of load on the wheel rolling radius and slip in a small mobile platform. Autonomous Robots, 43(8), 2095-2109. https://doi.org/10.1007/s10514-019-09857-0

Smieszek, M., Dobrzanska, M., & Dobrzanski, P. (2020). Measurement of wheel radius in an automated guided vehicle. Applied Sciences, 10(16), 5490. https://doi.org/10.3390/app10165490

Statista 2021 (https://www.statista.com/statistics/882696/global-agv-marketvolume/#:~:text=In%202018%2C%20it%20was%20estimated,e%2Dcommerce%20companies%20and%20hospitals ).

Suárez, J. I., Vinagre, B. M., Gutiérrez, F., Naranjo, J. E., & Chen, Y. Q. (2004, July). Dynamics models of an AGV Based on Experimental Results. In Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles. https://doi.org/10.1016/S1474-6670(17)31987-0

Veiga, J., Sousa, J., Machado, J., Mendonça, J., Machado, T., & Silva, P. (2019, April). Modeling of Dynamic Behavior of AGV systems. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 1307-1312). IEEE. https://doi.org/10.1109/CoDIT.2019.8820528

Villagra, J., & Herrero-Pérez, D. (2011). A comparison of control techniques for robust docking maneuvers of an AGV. IEEE Transactions on Control Systems Technology, 20(4), 1116-1123. https://doi.org/10.1109/TCST.2011.2159794

Weckx, S., Vandewal, B., Rademakers, E., Janssen, K., Geebelen, K., Wan, J.,... & van Nunen, E. (2020). Open Experimental AGV Platform for Dynamic Obstacle Avoidance in Narrow Corridors. In 2020 IEEE Intelligent Vehicles Symposium (IV) (pp. 844-851). IEEE. https://doi.org/10.1109/IV47402.2020.9304749

Wu, X., Sun, C., Zou, T., Xiao, H., Wang, L., & Zhai, J. (2019). Intelligent path recognition against image noises for vision guidance of automated guided vehicles in a complex workspace. Applied Sciences, 9(19), 4108. https://doi.org/10.3390/app9194108

Yuan, Z., Yang, Z., Lv, L., & Shi, Y. (2020). A Bi-Level Path Planning Algorithm for Multi-AGV Routing Problem. Electronics, 9(9), 1351. https://doi.org/10.3390/electronics9091351

Yun, D. U. (2016). Kinematics and Dynamic Modeling and Simulation Analysis of Three-wheeled Mobile Robot. 2016 MDM International Conference on Mechanics Design, Manufacturing and Automation.

Zhang, J., & Liu-Henke, X. (2020, July). Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (agv). In 2020 International Conference Mechatronic Systems and Materials (MSM) (pp. 1-6). IEEE. https://doi.org/10.1109/MSM49833.2020.9202248

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem