- -

Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llorella, Fabio Ricardo es_ES
dc.contributor.author Iáñez, Eduardo es_ES
dc.contributor.author Azorín, José Maria es_ES
dc.contributor.author Patow, Gustavo es_ES
dc.date.accessioned 2021-12-21T11:05:53Z
dc.date.available 2021-12-21T11:05:53Z
dc.date.issued 2021-12-17
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/178698
dc.description.abstract [EN] A Brain-Computer Intarface (BCI) is a technology that allows direct communication between the brain and the outside world without the need to use the peripheral nervous system. Most BCI systems focus on the use of motor imagination, evoked potentials, or slow cortical rhythms. In this work, the possibility of using visual imagination to construct a binary discriminator has been studied. EEG signals from seven people have been recorded while imagining seven geometric figures. Using convolutional neural networks it has been possible to distinguish between the imagination of a geometric figure and relaxation with an average success rate of 91 % with a Cohen kappa value of 0.77 and a percentage of false positives of 9 %. es_ES
dc.description.abstract [ES] Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación motora, los potenciales evocados o los ritmos corticales lentos. En este trabajo se ha estudiado la posibilidad de utilizar la imaginación visual para construir un discriminador binario (brain-switch, en inglés). Concretamente, a partir del registro de señales EEG de siete personas mientras imaginaban siete figuras geométricas, se ha desarrollado un BCI basado en redes neuronales convolucionales y en la densidad de potencia espectral en la banda α (8-12 Hz), que ha conseguido distinguir entre la imaginación de una figura geométrica cualquiera y el relax, con un acierto promedio del 91 %, con un valor Kappa de Cohen de 0.77 y un porcentaje de falsos positivos del 9 %. es_ES
dc.description.sponsorship Este trabajo ha sido parcialmente financiado por el proyecto TIN2017-88515-C2-2-R del Ministerio de Economía y Competitividad. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Brain-switch es_ES
dc.subject Visual imagery es_ES
dc.subject Convolutional neuronal network es_ES
dc.subject Power spectral density es_ES
dc.subject EEG es_ES
dc.subject Discriminador binario es_ES
dc.subject Interfaz cerebro-máquina es_ES
dc.subject Red neuronal convolucional es_ES
dc.subject Densidad potencia espectral es_ES
dc.title Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales es_ES
dc.title.alternative Binary visual imagery discriminator from EEG signals based on convolutional neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14987
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88515-C2-2-R/ES/VISUALIZACION, MODELADO Y SIMULACION EN ENTORNOS URBANOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Llorella, FR.; Iáñez, E.; Azorín, JM.; Patow, G. (2021). Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales. Revista Iberoamericana de Automática e Informática industrial. 19(1):108-116. https://doi.org/10.4995/riai.2021.14987 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14987 es_ES
dc.description.upvformatpinicio 108 es_ES
dc.description.upvformatpfin 116 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14987 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abhiram, Singh, A., Gumaste, 2019. Decoding imagined speech and computer control using brain waves. arXiv. es_ES
dc.description.references Aggarwal, S., Chugh, N., Jan. 2019. Signal processing techniques for motor imagery brain computer interface: A review. Array 1-2, 100003. https://doi.org/10.1016/j.array.2019.100003 es_ES
dc.description.references Ahn, M., Lee, M., Choi, J., Jun, S., Aug. 2014. A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors 14 (8), 14601-14633. https://doi.org/10.3390/s140814601 es_ES
dc.description.references Altman, D. G., 2006. Practical Statistics for Medical Research. Chapman & Hall/CRC. es_ES
dc.description.references Anderson, C. W., Sijercic, Z., 1996. Classification of eeg signals from four subjects during five mental tasks. In: Solving engineering problems with neural networks: proceedings of the conference on engineering applications in neural networks (EANN'96). Turkey, pp. 407-414. es_ES
dc.description.references Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K. A., Jun.2015. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics 9. https://doi.org/10.3389/fninf.2015.00016 es_ES
dc.description.references Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H., Mar. 1999. A spelling device for the paralysed. Nature 398 (6725), 297-298. https://doi.org/10.1038/18581 es_ES
dc.description.references Bobrov, P., Frolov, A., Cantor, C., Fedulova, I., Bakhnyan, M., Zhavoronkov, A., Jun. 2011. Brain-computer interface based on generation of visual images. PLoS ONE 6 (6), e20674. https://doi.org/10.1371/journal.pone.0020674 es_ES
dc.description.references Craik, A., He, Y., Contreras-Vidal, J. L., Apr. 2019. Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering 16 (3), 031001. https://doi.org/10.1088/1741-2552/ab0ab5 es_ES
dc.description.references Esfahani, E. T., Sundararajan, V., Oct. 2012. Classification of primitive shapes using brain-computer interfaces. Computer-Aided Design 44 (10), 1011-1019. https://doi.org/10.1016/j.cad.2011.04.008 es_ES
dc.description.references Fernando, L., Nicolas-Alonso, J., Gomez-Gil, 2012. Brain computer interface, a review. Sensors 12 (2), 1211-1279. https://doi.org/10.3390/s120201211 es_ES
dc.description.references Gavali, P., Banu, J. S., 2019. Deep convolutional neural network for image classification on CUDA platform. In: Deep Learning and Parallel Computing Environment for Bioengineering Systems. Elsevier, pp. 99-122. https://doi.org/10.1016/B978-0-12-816718-2.00013-0 es_ES
dc.description.references Gong, M., Xu, G., Li, M., Lin, F., May 2020. An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI. Journal of Neuroscience Methods 337, 108670. https://doi.org/10.1016/j.jneumeth.2020.108670 es_ES
dc.description.references Han, C.-H., Muller, K.-R., Hwang, H.-J., Mar. 2020. Brain-switches for asynchronous brain-computer interfaces: A systematic review. Electronics 9 (3), 422. https://doi.org/10.3390/electronics9030422 es_ES
dc.description.references Hortal, E., Planelles, D., Resquin, F., Climent, J. M., Azorín, J. M., Pons, J. L., Oct. 2015. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Journal of NeuroEngineering and Rehabilitation 12 (1). https://doi.org/10.1186/s12984-015-0082-9 es_ES
dc.description.references Jiang, J., Zhou, Z., Yin, E., Yu, Y., Liu, Y., Hu, D., Nov. 2015. A novel morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design. Computers in Biology and Medicine 66, 11-19. https://doi.org/10.1016/j.compbiomed.2015.08.011 es_ES
dc.description.references Jurcak, V., Tsuzuki, D., Dan, I., Feb. 2007. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34 (4), 1600-1611. https://doi.org/10.1016/j.neuroimage.2006.09.024 es_ES
dc.description.references Kim, C., Sun, J., Liu, D., Wang, Q., Paek, S., Mar. 2018. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Medical & Biological Engineering & Computing 56 (9), 1645-1658. https://doi.org/10.1007/s11517-017-1761-4 es_ES
dc.description.references Knauff, M., Kassubek, J., Mulack, T., Greenlee, M. W., Dec. 2000. Cortical activation evoked by visual mental imagery as measured by fMRI. NeuroReport 11 (18), 3957-3962. https://doi.org/10.1097/00001756-200012180-00011 es_ES
dc.description.references Kosmyna, N., Lindgren, J. T., Lecuyer, A., Sep. 2018. Attending to visual stimuli versus performing visual imagery as a control strategy for EEG-based brain-computer interfaces. Scientific Reports 8 (1). https://doi.org/10.1038/s41598-018-31472-9 es_ES
dc.description.references Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B., Jan. 2007. A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering 4 (2), R1-R13. https://doi.org/10.1088/1741-2560/4/2/R01 es_ES
dc.description.references McCall, J., Dec. 2005. Genetic algorithms for modelling and optimisation. Journal of Computational and Applied Mathematics 184 (1), 205-222. https://doi.org/10.1016/j.cam.2004.07.034 es_ES
dc.description.references Melnik, A., Legkov, P., Izdebski, K., Karcher, S. M., Hairston, W. D., Ferris, D. P., Konig, P., Mar. 2017. Systems, subjects, sessions: To what extent do these factors influence EEG data? Frontiers in Human Neuroscience 11. https://doi.org/10.3389/fnhum.2017.00150 es_ES
dc.description.references Pedroni, A., Bahreini, A., Langer, N., Nov. 2019. Automagic: Standardized preprocessing of big EEG data. bioRxiv. https://doi.org/10.1101/460469 es_ES
dc.description.references Planelles, D., Hortal, E., Costa, Á., Úbeda, A., Iáez, E., Azorín, J., Sep. 2014. Evaluating classifiers to detect arm movement intention from EEG signals. Sensors 14 (10), 18172-18186. https://doi.org/10.3390/s141018172 es_ES
dc.description.references Proakis, John, M., Dimitri, 1996. Digital signal processing: principles, algorithms and applications. Prentice-Hall, 910-913. es_ES
dc.description.references Reza, Abiri, S., Borhani, E. W., Sellers, Y., Jiang, X., Zhao, 2018. A comprehensive review of eeg-based brain-computer interface paradigms. Journal of Neural Engineering 16. https://doi.org/10.1088/1741-2552/aaf12e es_ES
dc.description.references Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C., Baumgartner, C., He, B., Beniczky, S., Oct. 2017. The standardized EEG electrode array of the IFCN. Clinical Neurophysiology 128 (10), 2070-2077. https://doi.org/10.1016/j.clinph.2017.06.254 es_ES
dc.description.references Swets, J., 2014. Signal detection theory and ROC analysis in psychology and diagnostics : collected papers. Psychology Press, New York, New York Hove, England. https://doi.org/10.4324/9781315806167 es_ES
dc.description.references Xie, S., Kaiser, D., Cichy, R. M., Aug. 2020. Visual imagery and perception share neural representations in the alpha frequency band. Current Biology 30 (15), 3062. https://doi.org/10.1016/j.cub.2020.07.023 es_ES
dc.description.references Zhang, W., Tan, C., Sun, F., Wu, H., Zhang, B., Dec. 2018. A review of EEGbased brain-computer interface systems design. Brain Science Advances 4 (2), 156-167. https://doi.org/10.26599/BSA.2018.9050010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem