- -

Genetic factors of functional traits

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Genetic factors of functional traits

Show full item record

García, ML.; Gunia, M.; Argente, MJ. (2021). Genetic factors of functional traits. World Rabbit Science. 29(4):207-220. https://doi.org/10.4995/wrs.2021.13320

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179219

Files in this item

Item Metadata

Title: Genetic factors of functional traits
Author: García, Mª Luz Gunia, Melanie Argente, Mª José
Issued date:
Abstract:
[EN] Selection of functional traits is a challenge for researchers, but an increasingly necessary objective due to the growing concern regarding animal welfare and overcoming the problems of reducing antibiotic use in ...[+]
Subjects: Genetic , Longevity , Omics , Resilience , Resistance to diseases , Selection , Rabbit
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2021.13320
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/wrs.2021.13320
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-2-P/ES/ESTUDIO MULTIOMICO DE LA MICROBIOTA DIGESTIVA Y SU RELACION CON LA SENSIBILIDAD AL AMBIENTE EN LINEAS DE CONEJO SELECCIONADAS POR VARIABILIDAD AMBIENTAL/
info:eu-repo/grantAgreement/GV//AICO/2019/169/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/
Thanks:
Spanish Ministry of Economy and Competitiveness (MINECO) with Projects AGL2017- 86083, C2-1-P and C2-2-P, and the Valencian Regional Government through Project AICO/2019/169
Type: Artículo

References

Agea I., García M.L., Blasco A., Argente M.J. 2019. Litter survival differences between divergently selected lines for environmental sensitivity in rabbits. Animals, 9: 603. https://doi.org/10.3390/ani9090603

Agea I., García M.L., Blasco A., Massányi P., Capcarová M., Argente M-J. 2020a. Correlated response to selection for litter size residual variability in rabbits' body condition. Animals. 10: 2447. https://doi.org/10.3390/ani10122447

Agea I., Muelas R., García ML., Hernández P., Santacreu M.A., Armero E., Blasco A., Argente MJ. 2020b. Correlated response in plasma fatty acids profile in rabbits selected for environmental sensitivity. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France. [+]
Agea I., García M.L., Blasco A., Argente M.J. 2019. Litter survival differences between divergently selected lines for environmental sensitivity in rabbits. Animals, 9: 603. https://doi.org/10.3390/ani9090603

Agea I., García M.L., Blasco A., Massányi P., Capcarová M., Argente M-J. 2020a. Correlated response to selection for litter size residual variability in rabbits' body condition. Animals. 10: 2447. https://doi.org/10.3390/ani10122447

Agea I., Muelas R., García ML., Hernández P., Santacreu M.A., Armero E., Blasco A., Argente MJ. 2020b. Correlated response in plasma fatty acids profile in rabbits selected for environmental sensitivity. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Argente M.J., Calle E.W., García M.L., Blasco A. 2017. Correlated response in litter size components in rabbits selected for litter size variability. J. Anim. Breed. Genet., 134: 505-511. https://doi.org/10.1111/jbg.12283

Argente M.J., García M.L. Zbyňovská K., Petruška P., Capcarová M., Blasco A. 2019. Correlated response to selection for litter size environmental variability in rabbits' resilience. Animal, 13: 2348-2355. https://doi.org/10.1017/S1751731119000302

Arrazuria R., Elguezabal N., Juste R. A., Derakhshani H., Khafipour E. 2016. Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Front. Microbiol., 7: 446. https://doi.org/10.3389/fmicb.2016.00446

Arrazuria R., Pérez V., Molina E., Juste R.A., Khafipour E., Elguezabal N. 2018. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci. Rep., 8: 141031. https://doi.org/10.1038/s41598-018-32484-1

Baselga M., Deltoro J., Camacho J., Blasco A. 1988. Genetic analysis on lung injury in four strains of meat rabbit. In: Proc. 4th World Rabbit Congress, 10-14 October, 1988. Budapest, Hungary, Vol. 1, 120-127.

Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, México, Vol. 1, 1-13.

Bäuerl C., Collado M.C., Zúñiga M., Blas E., Pérez Martínez G. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PloS one, 9: e105707. https://doi.org/10.1371/journal.pone.0105707

Beaumont M., Paës C., Mussard E., Knudsen C., Cauquil L., Aymard P., Barilly C., Gabinaud B., Zemb O., Fourre S., Gautier R., Lencina C., Eutamène H., Theodorou V., Canlet ., Combes S. 2020. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the sucklingto-weaning transition. Gut Microbes.,11: 1268-1286. https://doi.org/10.1080/19490976.2020.1747335

Beloumi D., Blasco A., Muelas R., Santacreu M.A., García M.L., Argente M.J. 2020. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals, 10: 1540. https://doi.org/10.3390/ani10091540

Belloumi D., Argente M.J., García M.L., Blasco A.1, Santacreu M.A. 2021a. Study of biomarkers of disease sensitivity in a robust and standard maternal line. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Belloumi D., Casto-Rebollo C., Blasco A., García M.L., Ibañez-Escriche N., Argente M.J. 2021b. Análisis Metagenómico de la microbiota cecal en dos líneas de conejo seleccionadas divergentemente por varianza ambiental del tamaño de camada. XIX Jornadas de Producción Animal, 1-2 June, 2021. Zaragoza, Spain.

Berghof T.V.L., Poppe M., Mulder H.A. 2019. Opportunities to improve resilience in animal breeding programs. Front. Genet. 9: 692. https://doi.org/10.3389/fgene.2018.00692

Blasco A., Martínez-Álvaro M., García M.L., Ibáñez-Escriche N., Argente M.J. 2017. Selection for genetic environmental sensitivity of litter size in rabbits. Genet. Sel. Evol., 49: 48-55. https://doi.org/10.1186/s12711-017-0323-4

Bodin L., Bolet G., Garcia M., Garreau H., Larzul C., David I. 2010a. Robustesse et canalisation: vision de généticiens. INRA Prod. Anim., 23: 11-22. https://doi.org/10.20870/productionsanimales.2010.23.1.3281

Bodin L., Garcia M., Saleil G., Bolet G., Garreau H. 2010b. Results of 10 generations of canalising selection for rabbit birth weight. In Proc. 9th World Congress on Genetics Applied to Livestock Production, August, Leipzig, Germany, 0391.

Bolet G., Garreau H., Joly T., Theau-Clement M., Falieres J., Hurtaud J., Bodin L. 2007. Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livest. Sci., 111: 28-32. https://doi.org/10.1016/j.livsci.2006.11.012

Calle E.W., García M.L., Blasco A., Argente M.J. 2017. Correlated response in early embryonic development in rabbits selected for litter size variability. World Rabbit Sci., 25: 323-327. https://doi.org/10.4995/wrs.2017.6340

Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021a. Immunological genes selected for environmental variance could control the animal resilience. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021b. Selection for environmental variance of litter size modified the cecum metabolic profile. 72nd Annual Meeting of European Federation of Animal Science (EAAP), August, Davos, Switzerland.

Cifre P., Baselga M., García-Ximénez F., Vicente J. 1998. Performance of hyperprolific rabbit line. I. Litter size traits. J. Anim. Breed. Genet. 115: 131-138. https://doi.org/10.1111/j.1439-0388.1998.tb00336.x

Colditz I.G., Hine B.C. 2016. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim. Prod. Sci., 56: 1961-1983. https://doi.org/10.1071/AN15297

Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439. https://doi.org/10.1017/S1751731113001079

Combes S., Massip K., Martin O., Furbeyre H., Cauquil L., Pascal G., Bouchez O., Le Floc'h N., Zemb O., Oswald I.P., Gidenne T. 2017. Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal, 11: 854-863. https://doi.org/10.1017/S1751731116002007

Cotozzolo E., Cremonesi P., Curone G., Menchetti L., Riva F., Biscarini F., Marongiu M.L., Castrica M., Castiglioni B., Miraglia D., Luridiana S., Brecchia G. 2021. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals, 11: 31. https://doi.org/10.3390/ani11010031

Crowley E.J., King J.M., Wilkinson T., Worgan H.J., Huson K. M., Rose M.T., McEwan N.R. 2017. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PLoS One, 12: e0165779. https://doi.org/10.1371/journal.pone.0165779

Eady S.J., Garreau H., Hurtaud. J. 2004. Heritability of resistance to bacterial infection in commercial meat rabbit populations. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, Mexico, 51-56.

Eady S.J., Garreau H., Gilmour A.R. 2007. Heritability of resistance to bacterial infection in meat rabbits. Livest. Sci., 112: 90-98. https://doi.org/10.1016/j.livsci.2007.01.158

El Nagar, A.G., Sánchez J.P., Ragab, M., Mínguez C., Baselga M. 2020. Genetic variability of functional longevity in five rabbit lines. Animal, 14: 1111-1119. https://doi.org/10.1017/S1751731119003434

Ferrian S., Blas E., Larsen T., Sánchez J.P., Friggens N.C., Corpa J.M., Baselga M., Pascual J.J. 2013. Comparison of immune response to lipopolysaccharide of rabbit does selected for litter size at weaning or founded for reproductive longevity. Res. Vet. Sci., 94: 518-525. https://doi.org/10.1016/j.rvsc.2013.01.008

Ferrian S., Guerrero I., Blas E., García-Diego F.J., Viana D., Pascual J.J., Corpa J.M. 2012. How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbi does under conventional and heat stress conditions. Vet. Immunol. Immunopathol., 150: 53-60. https://doi.org/10.1016/j.vetimm.2012.08.007

Formoso-Rafferty N., Cervantes I., Ibáñez-Escriche N., Gutiérrez J.P. 2016. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal, 10: 1770-1777. https://doi.org/10.1017/S1751731116000860

García M.L., Blasco A., Argente M.J. 2016. Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86: 1247-1250. https://doi.org/10.1016/j.theriogenology.2016.04.065

García M.L., Blasco A., García M.E., Argente M.J. 2018. Correlated response in body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 13: 784-789. https://doi.org/10.1017/S1751731118002203

Garreau H., Larzul C., Ducrocq V. 2001. Analyse de longévité de la souche de lapins INRA 1077. In Proc. 9èmes Journées de la Recherche Cunicole. Paris, France, 217-220.

Garreau H., Licois D., Rupp R., Rochambeau, H. de. 2006. Genetic variability of the resistance to epizootic rabbit enteropathy (ERE): new results. In Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 15-28.

Garreau H., Bolet G., Larzul C., Robery-Granié, C., Saleil G., San Cristobal M., Bodin L. 2008a. Results of four generations of a canalising selection for rabbit birth weight. Livest. Sci., 119: 55-62. https://doi.org/10.1016/j.livsci.2008.02.009

Garreau H., Eady S.J., Hurtaud J., Legarra A. 2008b. Genetic parameters of production traits and resistance to digestive disorders in a commercial rabbit population. In Proc. 9th World Rabbit Congress, 10-13 June, 2008. Verona, Italy, Vol. 1, 103-107.

Garreau H., Brard S., Hurtaud J., Guitton E., Cauquil L., Licois D., Schwartz B., Combes S, Gidenne T. 2012. Divergent selection for digestive disorders in two commercial rabbit lines: response of crossbred young rabbits to an experimental inoculation of Echerichia coli 0-103. In Proc. 10th World Rabbit Congress, 3-6 September, 2012. Sharm El-Sheikh, Egypt, Vol. 1, 153-157.

Garreau H., Larzul C., Tudela F., Ruesche J., Ducrocq V., Fortun-Lamothe L. 2017. Energy balance and body reserves in rabbit females selected for longevity. World Rabbit Sci., 25: 205-213. https://doi.org/10.4995/wrs.2017.5216

Groen A.F., Steine T., Colleau J.J., Pedersen J., Pribyl J., Reinsch N. 1997.Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest. Prod.Sci., 49, 1-21. https://doi.org/10.1016/S0301-6226(97)00041-9

Gunia M., David I., Hurtaud J., Maupin M., Gilbert H. Garreau H. 2015. Resistance to infectious diseases is a heritable trait in rabbits. J. Anim. Sci. 93: 5631-5638. https://doi.org/10.2527/jas.2015-9377

Gunia M., David I., Hurtaud J., Maupin M., Gilbert H., Garreau H. 2018. Genetic parameters for resistance to non-specific diseases and production traits measured in challenging and selection environments; application to a rabbit case. Front. Genet., 9: 467. https://doi.org/10.3389/fgene.2018.00467

Hou Y., Zhao D., Liu G., He F., Liu B., Fu S., Hao Y., Zhang W. 2016. Transcriptome analysis of rabbit spleen with hog cholera lapinized virus infection based on high-throughput sequencing technology. Bing Du Xue Bao. 32: 316-23.

Ibáñez-Escriche N., Moreno A., Nieto B., Piqueras P., Salgado C., Gutiérrez J.P. 2008a. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genet. Sel. Evol., 40: 279-293. https://doi.org/10.1051/gse:2008003

Ibáñez-Escriche N., Varona L., Sorensen D., Noguera J.L. 2008b. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal, 2: 19-26. https://doi.org/10.1017/S1751731107001000

Jacquier V., Estellé J., Schmaltz-Panneau B., Lecardonnel J., Moroldo M., Lemonnier G., Turner-Maier J., Duranthon V., Oswald I.P., Gidenne T., Rogel-Gaillard C. 2015. Genomewide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC Genomics, 16: 26-44. https://doi.org/10.1186/s12864-015-1218-9

Jin D.X., Zou H.W., Liu S.Q., Wang L.Z., Xue B., Wu D., Tian G., Cai J., Yan T.H., Wang Z.S., Peng Q.H. 2018. The underlying microbial mechanism of epizootic rabbit enteropathy triggered by a low fiber diet. Sci. Rep., 8: 12489. https://doi.org/10.1038/s41598-018-30178-2

Knap P.W. 2005. Breeding robust pigs. Aust. J. Exp. Agric., 45: 763-773. https://doi.org/10.1071/EA05041

Kraimi N., Dawkins M., Gebhardt- Henrich SG., Velge P., Rychlik I., Volf J., Leterrier C. 2019. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav., 210: 112658. https://doi.org/10.1016/j.physbeh.2019.112658

Larzul C., Gondret F., Combes S., Rochambeau H. de. 2005. Divergent selection on 63 day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. Sel. Evol., 37: 105-122. https://doi.org/10.1051/gse:2004038

Larzul C., Ducrocq V., Tudela F., Juin H., Garreau H. 2014. The length of productive life can be modified through selection: an experimental demonstration in the rabbit. J. Anim. Sci., 92: 2395-2401. https://doi.org/10.2527/jas.2013-7216

Lenoir G., Maupin M., Leloire C., Garreau H. 2013. Analyse de la longévité des lapines d'une lignée commerciale. In Proc. 15èmes Journées de la Recherche Cunicole. Le Mans, France, 181-184.

Lukefahr S.D., Odi H.B., Atakora J.K.A. 1996. Mass selection for 70-day body weight in rabbits. J. Anim. Sci., 74: 1481-1489. https://doi.org/10.2527/1996.7471481x

Mangino M., Roederer M., Beddall M., Nestle K.O., Spector T.D. 2017. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun., 8: 13850-13858. https://doi.org/10.1038/ncomms13850

Martin R., Nauta A.J., Ben Amor K., Knippels L.M.J., Knol J., Garssen J. 2010. Early Life: Gut microbiota and immune development in infancy. Benef. Microbes, 1: 367-382. https://doi.org/10.3920/BM2010.0027

Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16SDNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit - Impact of the hygiene of housing and of the intake level. In Proc. Symposium on Gut Microbiology. Gut microbiota: friend or foe?.Clermont-Ferrand - Francia, 17-20 june, 2012.

Matics Z.S., Nagy I., Gerencsér Z.S., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrö Z.S. 2014. Pannon breeding program in rabbit at Kaposvár University. World Rabbit Sci., 22: 287-300. https://doi.org/10.4995/wrs.2014.1511

Mattioli S., Dal Bosco A., Combes S., Moscati L., Crotti S., Cartoni Mancinelli A., Cotozzolo E., Castellini C. 2019. Dehydrated alfalfa and fresh grass supply in young rabbits: Effect on performance and caecal microbiota biodiversity. Animals, 9: 341. https://doi.org/10.3390/ani9060341

Mormede P., Terenina E. 2012. Molecular genetics of the adrenocortical axis and breeding for robustness. Domest. Anim. Endocrinol., 43: 116-131. https://doi.org/10.1016/j.domaniend.2012.05.002

Mulder H., Hill W., Vereijken A., Veerkamp R. 2009. Estimation of genetic variation in residual variance in female and male broiler chickens. Animal, 3: 1673-1680. https://doi.org/10.1017/S1751731109990668

Neave M.J., Hall R.N., Huang N., McColl K.A., Kerr P., Hoehn M., Taylor J., Strive T. 2018. Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses, 10: 512-534. https://doi.org/10.3390/v10090512

Nielsen H., Amer P. 2007. An approach to derive economic weights in breeding objectives using partial profile choice experiments. Animal, 1: 1254-1262. https://doi.org/10.1017/S1751731107000729

North M.K., Dalle Zotte, A., Hoffman, L.C. 2019. Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Sci., 27: 185-198. https://doi.org/10.4995/wrs.2019.11905

Paës C., Gidenne T., Bébin K., Duperray J., Gohier C., Guené-Grand E., Rebours G., Bouchez O., Barilly C., Aymard P., Combes S. 2020. Early introduction of solid feeds: Ingestion level matters more than prebiotic supplementation for shaping gut microbiota. Front. Vet. Sci., 7: 261. https://doi.org/10.3389/fvets.2020.00261

Pickard J.M., Zeng M.Y., Caruso R., Núñez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 279: 70-89. https://doi.org/10.1111/imr.12567

Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits. World Rabbit Sci., 11: 53-62. https://doi.org/10.4995/wrs.2003.497

Piles M., Garreau H., Rafel O., Larzul C., Ramon J., Ducrocq V. 2006. Survival analysis in two lines selected for reproductive traits. J. Anim. Sci., 84: 1658-1665. https://doi.org/10.2527/jas.2005-678

Piles M., Baselga M., Sánchez J.P. 2014. Expected response to different strategies of selection to increase heat tolerance assessed by changes in litter size in rabbit. J. Anim. Sci., 92: 4306-4312. https://doi.org/10.2527/jas.2014-7616

Piles M., Sánchez J.P. 2019. Use of group records of feed intake to select for feed efficiency in rabbit. J. Anim. Breed. Genet., 136: 474-483. https://doi.org/10.1111/jbg.12395

Pinheiro A., de Sousa-Pereira P., Strive T., Knight K.L., Woof J.M., Esteves P.J., Abrantes J. 2018. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS ONE, 13: e0201567. https://doi.org/10.1371/journal.pone.0201567

Ragab M., Ramon J., Rafel O., Quintanilla R., Piles M., Sanchez J.P. 2015. Paramètres génétiques des phénotypes liés aux maladies chez le lapin en engraissement nourri avec deux régimes alimentaires différents. In Proc. 16ème Journées de la Recherche Cunicole. Le Mans, France. 69-72.

Read T., Fortun-Lamothe L., Pascal G., Boulch M.L., Cauquil L., Gabinaud B., Bannelier C., Balmisse E., Destombes N., Bouchez O., Gidenne T., Combes S. 2019. Diversity and cooccurrence pattern analysis of cecal microbiota establishment at the onset of solid feeding in young rabbits. Front. Microbiol. 10: 973. https://doi.org/10.3389/fmicb.2019.00973

Reiss J., Bridle J.R., Montoya J.M., Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol., 24: 505-514. https://doi.org/10.1016/j.tree.2009.03.018

Rochambeau H., de la Fuente L.F., Rouvier R., Ouhayoun J. 1989. Sélection sur la vitesse de croissance postsevrage chez le lapin. Genet. Sel. Evol., 21: 527-546. https://doi.org/10.1186/1297-9686-21-4-527

Sánchez J.P., Baselga M., Peiró R., Silvestre M.A. 2004. Analysis of factors influencing longevity of rabbit does. Livest. Prod. Sci. 90: 227-234. https://doi.org/10.1016/j.livprodsci.2004.06.002

Sánchez J.P., Baselga M., Ducrocq V. 2006. Genetic and environmental correlations between longevity and litter size in rabbits. J. Anim. Breed. Genet., 123: 180-185. https://doi.org/10.1111/j.1439-0388.2006.00590.x

Sánchez J.P., Theilgaard P., Mínguez C., Baselga M. 2008. Constitution and evolution of a long-lived productive rabbit line. J. Anim. Sci., 86: 515-525. https://doi.org/10.2527/jas.2007-0217

San Cristobal-Gaudy M., Elsen J.M., Bodin L., Chevalet C. 1998. Prediction of the response to a selection for canalization of a continuous trait in animal breeding. Genet. Sel. Evol., 30: 423-451. https://doi.org/10.1186/1297-9686-30-5-423

Sauvant D., Martin O. 2010. Robustesse, rusticité, flexibilité, plasticité…les nouveaux critères de qualité des animaux et des systèmes d'elevage: définitions systémique et biologique des différents concepts. INRA Prod. Anim., 23: 5-10. https://doi.org/10.20870/productions-animales.2010.23.1.3280

Savietto D., Cervera C., Blas E., Baselga M., Larsen T., Friggens N.C., Pascual J.J. 2013. Environmental sensitivity differs between rabbit lines selected for reproductive intensity and longevity. Animal, 7: 1969-1977. https://doi.org/10.1017/S175173111300178X

Savietto D., Friggens N., Pascual J.J. 2015. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet. Sel. Evol., 47: 2. https://doi.org/10.1186/s12711-014-0073-5

Shrestha M., Garreau H., Balmisse E., Bed'hom B., David I., Fadeau A., Guitton E., Helloin E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2018. Estimation of Genetic Parameters of Pasteurellosis Resistance in Crossbred Rabbits. In Proc. 11th World Congress on Genetics Applied to Livestock Production. Auckland, New-Zealand.

Shrestha M., Garreau H., Balmisse E., Bed'hom B., David I., Guitton

E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2019. Projet RELAPA (génomique pour la REsistance génétique des LApins à la Pasteurellose): paramètres génétiques. In Proc. 18èmes Journées de la Recherche Cunicole. Nantes, France. 77-80.

Schwensow N.I., Detering H., Pederson S., Mazzoni C., Sinclair R., Peacock D., Kovaliski J., Cooke B., Fickel J., Sommer S. 2017. Resistance to RHD virus in wild Australian rabbits: Comparison of susceptible and resistant individuals using a genome wide approach. Mol. Ecol., 26: 4551-4561. https://doi.org/10.1111/mec.14228

Schnup P., Sansonetti P.J. 2012. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One, 7: e36446. https://doi.org/10.1371/journal.pone.0036446

Sobey W.R. 1969. Selection for resistance to myxomatosis in domestic rabbits (Oryctolagus cuniculus). J. Hygiene, 67: 743-754. https://doi.org/10.1017/s0022172400042194

Star L., Ellen E.D., Uitdehaag K., Brom F.W.A 2008. A plea to implement robustness into a breeding goal: poultry as an example. J. Agric. Environ. Ethics, 21: 109-125. https://doi.org/10.1007/s10806-007-9072-7

Subbian S., O'Brien P., Kushner N.L., Yang G., Tsenova L., Peixoto B., Bandyopadhyay N., Bader J.S., Karakousis P.C., Fallows D., Kaplan G. 2013. Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Commun Signal., 11: 16. https://doi.org/10.1186/1478-811X-11-16

Suen W.W., Uddin M.J., Prow N.A., Bowen R.A., Hall R.A., Bielefeldt-Ohmann H. 2016. Tissue-specific transcription profile of cytokine and chemokine genes associated with flavivirus control and non-lethal neuropathogenesis in rabbits. Virology, 494: 1-14. https://doi.org/10.1016/j.virol.2016.03.026

Theilgaard P., Sánchez J.P., Pascual J.J., Berg P., Friggens N.C., Baselga M. 2007. Late reproductive senescence in a rabbit line hyper selected for reproductive longevity, and its association with body reserves. Genet. Sel. Evol., 39: 207-223. https://doi.org/10.1051/gse:2006043

Theilgaard P., Baselga M., Blas, M., Friggens N.C., Cervera C., Pascual J.J. 2009. Differences in productive robustness in rabbits selected for reproductive longevity or litter size. Animal, 3: 637-646. https://doi.org/10.1017/S1751731109003838

Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. 2015. West Nile virus challenge alters the transcription profiles of innate immune genes in rabbit peripheral blood mononuclear cells. Front. Vet. Sci., 14: 76. https://doi.org/10.3389/fvets.2015.00076

Velasco-Galilea M., Piles M., Viñas M., Rafel O., González-Rodríguez O., Guivernau M., Sánchez J.P. 2018. Rabbit microbiota changes throughout the intestinal tract. Front Microbiol, 9: 2144. https://doi.org/10.3389/fmicb.2018.02144

Wang Q., Fue W., Guo Y., Tang Y., Du H., Wang M., Liu A., Li Q., An L., Tian J., Li M., Wu, Z. 2019a. Drinking warm water improves growth performance and optimizes the gut microbiota in early postweaning rabbits during winter. Animals, 9: 34. https://doi.org/10.3390/ani9060346

Wang G., Huang S., Wang Y., Cai S., Yu H., Liu H., Zeng X., Zhang G., Qiao S. 2019b. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci., 76: 3917-3937. https://doi.org/10.1007/s00018-019-03190-6

Wu Z., Zhou H., Li F., Zhang N., Zhu Y. 2018. Effect of dietary fiber levels on bacterial composition with age in the cecum of meat rabbits. Microbiologyopen, 8: e00708. https://doi.org/10.1002/mbo3.708

Youssef Y.M.K., Khalil M.H., Afifi E.A., El-Raffa A.M.E., Zaheds M. 2000. Heritability and non-genetic factors for lifetime production traits in New Zealand White rabbits raised in intensive system of production. In Proc. 7th World Rabbit Congress. 4-7 July, 2000. Valencia, Spain. 497-503.

Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784. https://doi.org/10.1139/cjm-2015-0201

Ziadi C., Mocé M.L., Laborda P., Blasco A., Santacreu M.A. 2013. Genetic selection for ovulation rate and litter in rabbits: Estimation of genetic parameters and direct and correlated response. J. Anim. Sci., 91: 3113-3120. https://doi.org/10.2527/jas.2012-6043

Zomeño C., Hernández P., Blasco A. 2013. Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection. J. Anim. Sci., 91: 4526-4531. https://doi.org/10.2527/jas.2013-6361

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record