- -

Genetic factors of functional traits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic factors of functional traits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García, Mª Luz es_ES
dc.contributor.author Gunia, Melanie es_ES
dc.contributor.author Argente, Mª José es_ES
dc.date.accessioned 2022-01-03T11:26:06Z
dc.date.available 2022-01-03T11:26:06Z
dc.date.issued 2021-12-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/179219
dc.description.abstract [EN] Selection of functional traits is a challenge for researchers, but an increasingly necessary objective due to the growing concern regarding animal welfare and overcoming the problems of reducing antibiotic use in rabbit production without undermining the animals’ productivity. The aim of this review is to discuss the genetic control of resistance to diseases, longevity and variability of birth weight within a litter, or litter size variability at birth within doe, describing the selection programmes and the first results from a multi-omics analysis of resistance/susceptibility to diseases. The heritability is around 0.13 for longevity, 0.01 for uniformity in birth weight, 0.09 for litter size variability and around 0.11 for disease resistance. Genetic correlations between functional traits and production traits are mostly no different from zero, or are moderately favourable in some cases. Six selection programmes developed in three countries are reviewed. Line foundation with high pressure for selection or divergent selection experiments are different methodologies used, and favourable responses to selection have been achieved. Genomics studies have revealed associations in regions related to immune system functionality and stress in lines selected for litter size variability. Knowledge of the role of gut microbiota in the rabbit’s immune response is very limited. A multi-omics approach can help determine the microbial mechanisms in regulation immunity genes of the host. es_ES
dc.description.sponsorship Spanish Ministry of Economy and Competitiveness (MINECO) with Projects AGL2017- 86083, C2-1-P and C2-2-P, and the Valencian Regional Government through Project AICO/2019/169 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Genetic es_ES
dc.subject Longevity es_ES
dc.subject Omics es_ES
dc.subject Resilience es_ES
dc.subject Resistance to diseases es_ES
dc.subject Selection es_ES
dc.subject Rabbit es_ES
dc.title Genetic factors of functional traits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2021.13320
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-2-P/ES/ESTUDIO MULTIOMICO DE LA MICROBIOTA DIGESTIVA Y SU RELACION CON LA SENSIBILIDAD AL AMBIENTE EN LINEAS DE CONEJO SELECCIONADAS POR VARIABILIDAD AMBIENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV//AICO/2019/169/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García, ML.; Gunia, M.; Argente, MJ. (2021). Genetic factors of functional traits. World Rabbit Science. 29(4):207-220. https://doi.org/10.4995/wrs.2021.13320 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2021.13320 es_ES
dc.description.upvformatpinicio 207 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\13320 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Agea I., García M.L., Blasco A., Argente M.J. 2019. Litter survival differences between divergently selected lines for environmental sensitivity in rabbits. Animals, 9: 603. https://doi.org/10.3390/ani9090603 es_ES
dc.description.references Agea I., García M.L., Blasco A., Massányi P., Capcarová M., Argente M-J. 2020a. Correlated response to selection for litter size residual variability in rabbits' body condition. Animals. 10: 2447. https://doi.org/10.3390/ani10122447 es_ES
dc.description.references Agea I., Muelas R., García ML., Hernández P., Santacreu M.A., Armero E., Blasco A., Argente MJ. 2020b. Correlated response in plasma fatty acids profile in rabbits selected for environmental sensitivity. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France. es_ES
dc.description.references Argente M.J., Calle E.W., García M.L., Blasco A. 2017. Correlated response in litter size components in rabbits selected for litter size variability. J. Anim. Breed. Genet., 134: 505-511. https://doi.org/10.1111/jbg.12283 es_ES
dc.description.references Argente M.J., García M.L. Zbyňovská K., Petruška P., Capcarová M., Blasco A. 2019. Correlated response to selection for litter size environmental variability in rabbits' resilience. Animal, 13: 2348-2355. https://doi.org/10.1017/S1751731119000302 es_ES
dc.description.references Arrazuria R., Elguezabal N., Juste R. A., Derakhshani H., Khafipour E. 2016. Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Front. Microbiol., 7: 446. https://doi.org/10.3389/fmicb.2016.00446 es_ES
dc.description.references Arrazuria R., Pérez V., Molina E., Juste R.A., Khafipour E., Elguezabal N. 2018. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci. Rep., 8: 141031. https://doi.org/10.1038/s41598-018-32484-1 es_ES
dc.description.references Baselga M., Deltoro J., Camacho J., Blasco A. 1988. Genetic analysis on lung injury in four strains of meat rabbit. In: Proc. 4th World Rabbit Congress, 10-14 October, 1988. Budapest, Hungary, Vol. 1, 120-127. es_ES
dc.description.references Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, México, Vol. 1, 1-13. es_ES
dc.description.references Bäuerl C., Collado M.C., Zúñiga M., Blas E., Pérez Martínez G. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PloS one, 9: e105707. https://doi.org/10.1371/journal.pone.0105707 es_ES
dc.description.references Beaumont M., Paës C., Mussard E., Knudsen C., Cauquil L., Aymard P., Barilly C., Gabinaud B., Zemb O., Fourre S., Gautier R., Lencina C., Eutamène H., Theodorou V., Canlet ., Combes S. 2020. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the sucklingto-weaning transition. Gut Microbes.,11: 1268-1286. https://doi.org/10.1080/19490976.2020.1747335 es_ES
dc.description.references Beloumi D., Blasco A., Muelas R., Santacreu M.A., García M.L., Argente M.J. 2020. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals, 10: 1540. https://doi.org/10.3390/ani10091540 es_ES
dc.description.references Belloumi D., Argente M.J., García M.L., Blasco A.1, Santacreu M.A. 2021a. Study of biomarkers of disease sensitivity in a robust and standard maternal line. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France. es_ES
dc.description.references Belloumi D., Casto-Rebollo C., Blasco A., García M.L., Ibañez-Escriche N., Argente M.J. 2021b. Análisis Metagenómico de la microbiota cecal en dos líneas de conejo seleccionadas divergentemente por varianza ambiental del tamaño de camada. XIX Jornadas de Producción Animal, 1-2 June, 2021. Zaragoza, Spain. es_ES
dc.description.references Berghof T.V.L., Poppe M., Mulder H.A. 2019. Opportunities to improve resilience in animal breeding programs. Front. Genet. 9: 692. https://doi.org/10.3389/fgene.2018.00692 es_ES
dc.description.references Blasco A., Martínez-Álvaro M., García M.L., Ibáñez-Escriche N., Argente M.J. 2017. Selection for genetic environmental sensitivity of litter size in rabbits. Genet. Sel. Evol., 49: 48-55. https://doi.org/10.1186/s12711-017-0323-4 es_ES
dc.description.references Bodin L., Bolet G., Garcia M., Garreau H., Larzul C., David I. 2010a. Robustesse et canalisation: vision de généticiens. INRA Prod. Anim., 23: 11-22. https://doi.org/10.20870/productionsanimales.2010.23.1.3281 es_ES
dc.description.references Bodin L., Garcia M., Saleil G., Bolet G., Garreau H. 2010b. Results of 10 generations of canalising selection for rabbit birth weight. In Proc. 9th World Congress on Genetics Applied to Livestock Production, August, Leipzig, Germany, 0391. es_ES
dc.description.references Bolet G., Garreau H., Joly T., Theau-Clement M., Falieres J., Hurtaud J., Bodin L. 2007. Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livest. Sci., 111: 28-32. https://doi.org/10.1016/j.livsci.2006.11.012 es_ES
dc.description.references Calle E.W., García M.L., Blasco A., Argente M.J. 2017. Correlated response in early embryonic development in rabbits selected for litter size variability. World Rabbit Sci., 25: 323-327. https://doi.org/10.4995/wrs.2017.6340 es_ES
dc.description.references Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021a. Immunological genes selected for environmental variance could control the animal resilience. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France. es_ES
dc.description.references Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021b. Selection for environmental variance of litter size modified the cecum metabolic profile. 72nd Annual Meeting of European Federation of Animal Science (EAAP), August, Davos, Switzerland. es_ES
dc.description.references Cifre P., Baselga M., García-Ximénez F., Vicente J. 1998. Performance of hyperprolific rabbit line. I. Litter size traits. J. Anim. Breed. Genet. 115: 131-138. https://doi.org/10.1111/j.1439-0388.1998.tb00336.x es_ES
dc.description.references Colditz I.G., Hine B.C. 2016. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim. Prod. Sci., 56: 1961-1983. https://doi.org/10.1071/AN15297 es_ES
dc.description.references Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439. https://doi.org/10.1017/S1751731113001079 es_ES
dc.description.references Combes S., Massip K., Martin O., Furbeyre H., Cauquil L., Pascal G., Bouchez O., Le Floc'h N., Zemb O., Oswald I.P., Gidenne T. 2017. Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal, 11: 854-863. https://doi.org/10.1017/S1751731116002007 es_ES
dc.description.references Cotozzolo E., Cremonesi P., Curone G., Menchetti L., Riva F., Biscarini F., Marongiu M.L., Castrica M., Castiglioni B., Miraglia D., Luridiana S., Brecchia G. 2021. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals, 11: 31. https://doi.org/10.3390/ani11010031 es_ES
dc.description.references Crowley E.J., King J.M., Wilkinson T., Worgan H.J., Huson K. M., Rose M.T., McEwan N.R. 2017. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PLoS One, 12: e0165779. https://doi.org/10.1371/journal.pone.0165779 es_ES
dc.description.references Eady S.J., Garreau H., Hurtaud. J. 2004. Heritability of resistance to bacterial infection in commercial meat rabbit populations. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, Mexico, 51-56. es_ES
dc.description.references Eady S.J., Garreau H., Gilmour A.R. 2007. Heritability of resistance to bacterial infection in meat rabbits. Livest. Sci., 112: 90-98. https://doi.org/10.1016/j.livsci.2007.01.158 es_ES
dc.description.references El Nagar, A.G., Sánchez J.P., Ragab, M., Mínguez C., Baselga M. 2020. Genetic variability of functional longevity in five rabbit lines. Animal, 14: 1111-1119. https://doi.org/10.1017/S1751731119003434 es_ES
dc.description.references Ferrian S., Blas E., Larsen T., Sánchez J.P., Friggens N.C., Corpa J.M., Baselga M., Pascual J.J. 2013. Comparison of immune response to lipopolysaccharide of rabbit does selected for litter size at weaning or founded for reproductive longevity. Res. Vet. Sci., 94: 518-525. https://doi.org/10.1016/j.rvsc.2013.01.008 es_ES
dc.description.references Ferrian S., Guerrero I., Blas E., García-Diego F.J., Viana D., Pascual J.J., Corpa J.M. 2012. How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbi does under conventional and heat stress conditions. Vet. Immunol. Immunopathol., 150: 53-60. https://doi.org/10.1016/j.vetimm.2012.08.007 es_ES
dc.description.references Formoso-Rafferty N., Cervantes I., Ibáñez-Escriche N., Gutiérrez J.P. 2016. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal, 10: 1770-1777. https://doi.org/10.1017/S1751731116000860 es_ES
dc.description.references García M.L., Blasco A., Argente M.J. 2016. Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86: 1247-1250. https://doi.org/10.1016/j.theriogenology.2016.04.065 es_ES
dc.description.references García M.L., Blasco A., García M.E., Argente M.J. 2018. Correlated response in body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 13: 784-789. https://doi.org/10.1017/S1751731118002203 es_ES
dc.description.references Garreau H., Larzul C., Ducrocq V. 2001. Analyse de longévité de la souche de lapins INRA 1077. In Proc. 9èmes Journées de la Recherche Cunicole. Paris, France, 217-220. es_ES
dc.description.references Garreau H., Licois D., Rupp R., Rochambeau, H. de. 2006. Genetic variability of the resistance to epizootic rabbit enteropathy (ERE): new results. In Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 15-28. es_ES
dc.description.references Garreau H., Bolet G., Larzul C., Robery-Granié, C., Saleil G., San Cristobal M., Bodin L. 2008a. Results of four generations of a canalising selection for rabbit birth weight. Livest. Sci., 119: 55-62. https://doi.org/10.1016/j.livsci.2008.02.009 es_ES
dc.description.references Garreau H., Eady S.J., Hurtaud J., Legarra A. 2008b. Genetic parameters of production traits and resistance to digestive disorders in a commercial rabbit population. In Proc. 9th World Rabbit Congress, 10-13 June, 2008. Verona, Italy, Vol. 1, 103-107. es_ES
dc.description.references Garreau H., Brard S., Hurtaud J., Guitton E., Cauquil L., Licois D., Schwartz B., Combes S, Gidenne T. 2012. Divergent selection for digestive disorders in two commercial rabbit lines: response of crossbred young rabbits to an experimental inoculation of Echerichia coli 0-103. In Proc. 10th World Rabbit Congress, 3-6 September, 2012. Sharm El-Sheikh, Egypt, Vol. 1, 153-157. es_ES
dc.description.references Garreau H., Larzul C., Tudela F., Ruesche J., Ducrocq V., Fortun-Lamothe L. 2017. Energy balance and body reserves in rabbit females selected for longevity. World Rabbit Sci., 25: 205-213. https://doi.org/10.4995/wrs.2017.5216 es_ES
dc.description.references Groen A.F., Steine T., Colleau J.J., Pedersen J., Pribyl J., Reinsch N. 1997.Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest. Prod.Sci., 49, 1-21. https://doi.org/10.1016/S0301-6226(97)00041-9 es_ES
dc.description.references Gunia M., David I., Hurtaud J., Maupin M., Gilbert H. Garreau H. 2015. Resistance to infectious diseases is a heritable trait in rabbits. J. Anim. Sci. 93: 5631-5638. https://doi.org/10.2527/jas.2015-9377 es_ES
dc.description.references Gunia M., David I., Hurtaud J., Maupin M., Gilbert H., Garreau H. 2018. Genetic parameters for resistance to non-specific diseases and production traits measured in challenging and selection environments; application to a rabbit case. Front. Genet., 9: 467. https://doi.org/10.3389/fgene.2018.00467 es_ES
dc.description.references Hou Y., Zhao D., Liu G., He F., Liu B., Fu S., Hao Y., Zhang W. 2016. Transcriptome analysis of rabbit spleen with hog cholera lapinized virus infection based on high-throughput sequencing technology. Bing Du Xue Bao. 32: 316-23. es_ES
dc.description.references Ibáñez-Escriche N., Moreno A., Nieto B., Piqueras P., Salgado C., Gutiérrez J.P. 2008a. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genet. Sel. Evol., 40: 279-293. https://doi.org/10.1051/gse:2008003 es_ES
dc.description.references Ibáñez-Escriche N., Varona L., Sorensen D., Noguera J.L. 2008b. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal, 2: 19-26. https://doi.org/10.1017/S1751731107001000 es_ES
dc.description.references Jacquier V., Estellé J., Schmaltz-Panneau B., Lecardonnel J., Moroldo M., Lemonnier G., Turner-Maier J., Duranthon V., Oswald I.P., Gidenne T., Rogel-Gaillard C. 2015. Genomewide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC Genomics, 16: 26-44. https://doi.org/10.1186/s12864-015-1218-9 es_ES
dc.description.references Jin D.X., Zou H.W., Liu S.Q., Wang L.Z., Xue B., Wu D., Tian G., Cai J., Yan T.H., Wang Z.S., Peng Q.H. 2018. The underlying microbial mechanism of epizootic rabbit enteropathy triggered by a low fiber diet. Sci. Rep., 8: 12489. https://doi.org/10.1038/s41598-018-30178-2 es_ES
dc.description.references Knap P.W. 2005. Breeding robust pigs. Aust. J. Exp. Agric., 45: 763-773. https://doi.org/10.1071/EA05041 es_ES
dc.description.references Kraimi N., Dawkins M., Gebhardt- Henrich SG., Velge P., Rychlik I., Volf J., Leterrier C. 2019. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav., 210: 112658. https://doi.org/10.1016/j.physbeh.2019.112658 es_ES
dc.description.references Larzul C., Gondret F., Combes S., Rochambeau H. de. 2005. Divergent selection on 63 day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. Sel. Evol., 37: 105-122. https://doi.org/10.1051/gse:2004038 es_ES
dc.description.references Larzul C., Ducrocq V., Tudela F., Juin H., Garreau H. 2014. The length of productive life can be modified through selection: an experimental demonstration in the rabbit. J. Anim. Sci., 92: 2395-2401. https://doi.org/10.2527/jas.2013-7216 es_ES
dc.description.references Lenoir G., Maupin M., Leloire C., Garreau H. 2013. Analyse de la longévité des lapines d'une lignée commerciale. In Proc. 15èmes Journées de la Recherche Cunicole. Le Mans, France, 181-184. es_ES
dc.description.references Lukefahr S.D., Odi H.B., Atakora J.K.A. 1996. Mass selection for 70-day body weight in rabbits. J. Anim. Sci., 74: 1481-1489. https://doi.org/10.2527/1996.7471481x es_ES
dc.description.references Mangino M., Roederer M., Beddall M., Nestle K.O., Spector T.D. 2017. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun., 8: 13850-13858. https://doi.org/10.1038/ncomms13850 es_ES
dc.description.references Martin R., Nauta A.J., Ben Amor K., Knippels L.M.J., Knol J., Garssen J. 2010. Early Life: Gut microbiota and immune development in infancy. Benef. Microbes, 1: 367-382. https://doi.org/10.3920/BM2010.0027 es_ES
dc.description.references Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16SDNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit - Impact of the hygiene of housing and of the intake level. In Proc. Symposium on Gut Microbiology. Gut microbiota: friend or foe?.Clermont-Ferrand - Francia, 17-20 june, 2012. es_ES
dc.description.references Matics Z.S., Nagy I., Gerencsér Z.S., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrö Z.S. 2014. Pannon breeding program in rabbit at Kaposvár University. World Rabbit Sci., 22: 287-300. https://doi.org/10.4995/wrs.2014.1511 es_ES
dc.description.references Mattioli S., Dal Bosco A., Combes S., Moscati L., Crotti S., Cartoni Mancinelli A., Cotozzolo E., Castellini C. 2019. Dehydrated alfalfa and fresh grass supply in young rabbits: Effect on performance and caecal microbiota biodiversity. Animals, 9: 341. https://doi.org/10.3390/ani9060341 es_ES
dc.description.references Mormede P., Terenina E. 2012. Molecular genetics of the adrenocortical axis and breeding for robustness. Domest. Anim. Endocrinol., 43: 116-131. https://doi.org/10.1016/j.domaniend.2012.05.002 es_ES
dc.description.references Mulder H., Hill W., Vereijken A., Veerkamp R. 2009. Estimation of genetic variation in residual variance in female and male broiler chickens. Animal, 3: 1673-1680. https://doi.org/10.1017/S1751731109990668 es_ES
dc.description.references Neave M.J., Hall R.N., Huang N., McColl K.A., Kerr P., Hoehn M., Taylor J., Strive T. 2018. Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses, 10: 512-534. https://doi.org/10.3390/v10090512 es_ES
dc.description.references Nielsen H., Amer P. 2007. An approach to derive economic weights in breeding objectives using partial profile choice experiments. Animal, 1: 1254-1262. https://doi.org/10.1017/S1751731107000729 es_ES
dc.description.references North M.K., Dalle Zotte, A., Hoffman, L.C. 2019. Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Sci., 27: 185-198. https://doi.org/10.4995/wrs.2019.11905 es_ES
dc.description.references Paës C., Gidenne T., Bébin K., Duperray J., Gohier C., Guené-Grand E., Rebours G., Bouchez O., Barilly C., Aymard P., Combes S. 2020. Early introduction of solid feeds: Ingestion level matters more than prebiotic supplementation for shaping gut microbiota. Front. Vet. Sci., 7: 261. https://doi.org/10.3389/fvets.2020.00261 es_ES
dc.description.references Pickard J.M., Zeng M.Y., Caruso R., Núñez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 279: 70-89. https://doi.org/10.1111/imr.12567 es_ES
dc.description.references Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits. World Rabbit Sci., 11: 53-62. https://doi.org/10.4995/wrs.2003.497 es_ES
dc.description.references Piles M., Garreau H., Rafel O., Larzul C., Ramon J., Ducrocq V. 2006. Survival analysis in two lines selected for reproductive traits. J. Anim. Sci., 84: 1658-1665. https://doi.org/10.2527/jas.2005-678 es_ES
dc.description.references Piles M., Baselga M., Sánchez J.P. 2014. Expected response to different strategies of selection to increase heat tolerance assessed by changes in litter size in rabbit. J. Anim. Sci., 92: 4306-4312. https://doi.org/10.2527/jas.2014-7616 es_ES
dc.description.references Piles M., Sánchez J.P. 2019. Use of group records of feed intake to select for feed efficiency in rabbit. J. Anim. Breed. Genet., 136: 474-483. https://doi.org/10.1111/jbg.12395 es_ES
dc.description.references Pinheiro A., de Sousa-Pereira P., Strive T., Knight K.L., Woof J.M., Esteves P.J., Abrantes J. 2018. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS ONE, 13: e0201567. https://doi.org/10.1371/journal.pone.0201567 es_ES
dc.description.references Ragab M., Ramon J., Rafel O., Quintanilla R., Piles M., Sanchez J.P. 2015. Paramètres génétiques des phénotypes liés aux maladies chez le lapin en engraissement nourri avec deux régimes alimentaires différents. In Proc. 16ème Journées de la Recherche Cunicole. Le Mans, France. 69-72. es_ES
dc.description.references Read T., Fortun-Lamothe L., Pascal G., Boulch M.L., Cauquil L., Gabinaud B., Bannelier C., Balmisse E., Destombes N., Bouchez O., Gidenne T., Combes S. 2019. Diversity and cooccurrence pattern analysis of cecal microbiota establishment at the onset of solid feeding in young rabbits. Front. Microbiol. 10: 973. https://doi.org/10.3389/fmicb.2019.00973 es_ES
dc.description.references Reiss J., Bridle J.R., Montoya J.M., Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol., 24: 505-514. https://doi.org/10.1016/j.tree.2009.03.018 es_ES
dc.description.references Rochambeau H., de la Fuente L.F., Rouvier R., Ouhayoun J. 1989. Sélection sur la vitesse de croissance postsevrage chez le lapin. Genet. Sel. Evol., 21: 527-546. https://doi.org/10.1186/1297-9686-21-4-527 es_ES
dc.description.references Sánchez J.P., Baselga M., Peiró R., Silvestre M.A. 2004. Analysis of factors influencing longevity of rabbit does. Livest. Prod. Sci. 90: 227-234. https://doi.org/10.1016/j.livprodsci.2004.06.002 es_ES
dc.description.references Sánchez J.P., Baselga M., Ducrocq V. 2006. Genetic and environmental correlations between longevity and litter size in rabbits. J. Anim. Breed. Genet., 123: 180-185. https://doi.org/10.1111/j.1439-0388.2006.00590.x es_ES
dc.description.references Sánchez J.P., Theilgaard P., Mínguez C., Baselga M. 2008. Constitution and evolution of a long-lived productive rabbit line. J. Anim. Sci., 86: 515-525. https://doi.org/10.2527/jas.2007-0217 es_ES
dc.description.references San Cristobal-Gaudy M., Elsen J.M., Bodin L., Chevalet C. 1998. Prediction of the response to a selection for canalization of a continuous trait in animal breeding. Genet. Sel. Evol., 30: 423-451. https://doi.org/10.1186/1297-9686-30-5-423 es_ES
dc.description.references Sauvant D., Martin O. 2010. Robustesse, rusticité, flexibilité, plasticité…les nouveaux critères de qualité des animaux et des systèmes d'elevage: définitions systémique et biologique des différents concepts. INRA Prod. Anim., 23: 5-10. https://doi.org/10.20870/productions-animales.2010.23.1.3280 es_ES
dc.description.references Savietto D., Cervera C., Blas E., Baselga M., Larsen T., Friggens N.C., Pascual J.J. 2013. Environmental sensitivity differs between rabbit lines selected for reproductive intensity and longevity. Animal, 7: 1969-1977. https://doi.org/10.1017/S175173111300178X es_ES
dc.description.references Savietto D., Friggens N., Pascual J.J. 2015. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet. Sel. Evol., 47: 2. https://doi.org/10.1186/s12711-014-0073-5 es_ES
dc.description.references Shrestha M., Garreau H., Balmisse E., Bed'hom B., David I., Fadeau A., Guitton E., Helloin E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2018. Estimation of Genetic Parameters of Pasteurellosis Resistance in Crossbred Rabbits. In Proc. 11th World Congress on Genetics Applied to Livestock Production. Auckland, New-Zealand. es_ES
dc.description.references Shrestha M., Garreau H., Balmisse E., Bed'hom B., David I., Guitton es_ES
dc.description.references E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2019. Projet RELAPA (génomique pour la REsistance génétique des LApins à la Pasteurellose): paramètres génétiques. In Proc. 18èmes Journées de la Recherche Cunicole. Nantes, France. 77-80. es_ES
dc.description.references Schwensow N.I., Detering H., Pederson S., Mazzoni C., Sinclair R., Peacock D., Kovaliski J., Cooke B., Fickel J., Sommer S. 2017. Resistance to RHD virus in wild Australian rabbits: Comparison of susceptible and resistant individuals using a genome wide approach. Mol. Ecol., 26: 4551-4561. https://doi.org/10.1111/mec.14228 es_ES
dc.description.references Schnup P., Sansonetti P.J. 2012. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One, 7: e36446. https://doi.org/10.1371/journal.pone.0036446 es_ES
dc.description.references Sobey W.R. 1969. Selection for resistance to myxomatosis in domestic rabbits (Oryctolagus cuniculus). J. Hygiene, 67: 743-754. https://doi.org/10.1017/s0022172400042194 es_ES
dc.description.references Star L., Ellen E.D., Uitdehaag K., Brom F.W.A 2008. A plea to implement robustness into a breeding goal: poultry as an example. J. Agric. Environ. Ethics, 21: 109-125. https://doi.org/10.1007/s10806-007-9072-7 es_ES
dc.description.references Subbian S., O'Brien P., Kushner N.L., Yang G., Tsenova L., Peixoto B., Bandyopadhyay N., Bader J.S., Karakousis P.C., Fallows D., Kaplan G. 2013. Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Commun Signal., 11: 16. https://doi.org/10.1186/1478-811X-11-16 es_ES
dc.description.references Suen W.W., Uddin M.J., Prow N.A., Bowen R.A., Hall R.A., Bielefeldt-Ohmann H. 2016. Tissue-specific transcription profile of cytokine and chemokine genes associated with flavivirus control and non-lethal neuropathogenesis in rabbits. Virology, 494: 1-14. https://doi.org/10.1016/j.virol.2016.03.026 es_ES
dc.description.references Theilgaard P., Sánchez J.P., Pascual J.J., Berg P., Friggens N.C., Baselga M. 2007. Late reproductive senescence in a rabbit line hyper selected for reproductive longevity, and its association with body reserves. Genet. Sel. Evol., 39: 207-223. https://doi.org/10.1051/gse:2006043 es_ES
dc.description.references Theilgaard P., Baselga M., Blas, M., Friggens N.C., Cervera C., Pascual J.J. 2009. Differences in productive robustness in rabbits selected for reproductive longevity or litter size. Animal, 3: 637-646. https://doi.org/10.1017/S1751731109003838 es_ES
dc.description.references Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. 2015. West Nile virus challenge alters the transcription profiles of innate immune genes in rabbit peripheral blood mononuclear cells. Front. Vet. Sci., 14: 76. https://doi.org/10.3389/fvets.2015.00076 es_ES
dc.description.references Velasco-Galilea M., Piles M., Viñas M., Rafel O., González-Rodríguez O., Guivernau M., Sánchez J.P. 2018. Rabbit microbiota changes throughout the intestinal tract. Front Microbiol, 9: 2144. https://doi.org/10.3389/fmicb.2018.02144 es_ES
dc.description.references Wang Q., Fue W., Guo Y., Tang Y., Du H., Wang M., Liu A., Li Q., An L., Tian J., Li M., Wu, Z. 2019a. Drinking warm water improves growth performance and optimizes the gut microbiota in early postweaning rabbits during winter. Animals, 9: 34. https://doi.org/10.3390/ani9060346 es_ES
dc.description.references Wang G., Huang S., Wang Y., Cai S., Yu H., Liu H., Zeng X., Zhang G., Qiao S. 2019b. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci., 76: 3917-3937. https://doi.org/10.1007/s00018-019-03190-6 es_ES
dc.description.references Wu Z., Zhou H., Li F., Zhang N., Zhu Y. 2018. Effect of dietary fiber levels on bacterial composition with age in the cecum of meat rabbits. Microbiologyopen, 8: e00708. https://doi.org/10.1002/mbo3.708 es_ES
dc.description.references Youssef Y.M.K., Khalil M.H., Afifi E.A., El-Raffa A.M.E., Zaheds M. 2000. Heritability and non-genetic factors for lifetime production traits in New Zealand White rabbits raised in intensive system of production. In Proc. 7th World Rabbit Congress. 4-7 July, 2000. Valencia, Spain. 497-503. es_ES
dc.description.references Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784. https://doi.org/10.1139/cjm-2015-0201 es_ES
dc.description.references Ziadi C., Mocé M.L., Laborda P., Blasco A., Santacreu M.A. 2013. Genetic selection for ovulation rate and litter in rabbits: Estimation of genetic parameters and direct and correlated response. J. Anim. Sci., 91: 3113-3120. https://doi.org/10.2527/jas.2012-6043 es_ES
dc.description.references Zomeño C., Hernández P., Blasco A. 2013. Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection. J. Anim. Sci., 91: 4526-4531. https://doi.org/10.2527/jas.2013-6361 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem