- -

Seamlessly Managing HPC Workloads Through Kubernetes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Seamlessly Managing HPC Workloads Through Kubernetes

Mostrar el registro completo del ítem

López-Huguet, S.; Segrelles Quilis, JD.; Kasztelnik, M.; Bubak, M.; Blanquer Espert, I. (2020). Seamlessly Managing HPC Workloads Through Kubernetes. Springer. 310-320. https://doi.org/10.1007/978-3-030-59851-8_20

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179810

Ficheros en el ítem

Metadatos del ítem

Título: Seamlessly Managing HPC Workloads Through Kubernetes
Autor: López-Huguet, Sergio Segrelles Quilis, José Damián Kasztelnik, Marek Bubak, Marian Blanquer Espert, Ignacio
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] This paper describes an approach to integrate the jobs management of High Performance Computing (HPC) infrastructures in cloud architectures by managing HPC workloads seamlessly from the cloud job scheduler. The paper ...[+]
Palabras clave: Integrating cloud and HPC , Kubernetes , Docker and Singularity containers
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-59850-1
Fuente:
High Performance Computing. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-59851-8_20
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-59851-8_20
Título del congreso: ISC High Performance 2020
Lugar del congreso: Online
Fecha congreso: Junio 21-25,2020
Serie: Lecture Notes in Computer Science;12321
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/826494/EU/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F032//ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/
Agradecimientos:
The work presented in this article has been partially funded by the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat ...[+]
Tipo: Comunicación en congreso Artículo Capítulo de libro

References

Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020

Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020

Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020 [+]
Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020

Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020

Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020

High Performance Computing and deep learning in medicine: Enhancing physicians, helping patients. https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients. Accessed 07 May 2020

Medical Imaging Gets an AI Boost. https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/. Accessed 07 May 2020

Bhatnagar, S.: An audit of malignant solid tumors in infants and neonates. J. Neonatal Surg. 1, 5 (2012)

Cabellos, L., Campos, I., Fernández-Del-Castillo, E., Owsiak, M., Palak, B., Płóciennik, M.: Scientific workflow orchestration interoperating HTC and HPC resources. Comput. Phys. Commun. (2011). https://doi.org/10.1016/j.cpc.2010.12.020

Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., et al.: Metrics for heterogeneous scientific workflows: a case study of an earthquake science application. Int. J. High Perform. Comput. Appl. (2011). https://doi.org/10.1177/1094342011414743

Chen, S., He, Z., Han, X., He, X., et al.: How big data and high-performance computing drive brain science (2019). https://doi.org/10.1016/j.gpb.2019.09.003

Cyfronet Krakow, P.: Prometheus supercomputer. www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html. Accessed 07 May 2020

Gulo, C.A.S.J., Sementille, A.C., Tavares, J.M.R.S.: Techniques of medical image processing and analysis accelerated by high-performance computing: a systematic literature review. J. Real-Time Image Process. 16(6), 1891–1908 (2017). https://doi.org/10.1007/s11554-017-0734-z

Hussain, T., Haider, A., Shafique, M., Taleb Ahmed, A.: A high-performance system architecture for medical imaging (2019). https://doi.org/10.5772/intechopen.83581

Ivanova, D., Borovska, P., Zahov, S.: Development of PaaS using AWS and Terraform for medical imaging analytics. In: AIP Conference Proceedings (2018). https://doi.org/10.1063/1.5082133

Jamalian, S., Rajaei, H.: Data-intensive HPC tasks scheduling with SDN to enable HPC-as-a-service. In: Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 596–603. Institute of Electrical and Electronics Engineers Inc., August 2015. https://doi.org/10.1109/CLOUD.2015.85

Kao, H.Y., et al.: Cloud-based service information system for evaluating quality of life after breast cancer surgery. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0139252

Kovacs, L., Kovacs, R., Hajdu, A.: High performance computing in medical image analysis HuSSaR, June 2018. http://arxiv.org/abs/1806.06171

Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459

López-Huguet, S., García-Castro, F., Alberich-Bayarri, A., Blanquer, I.: A cloud architecture for the execution of medical imaging biomarkers. In: Rodrigues, J., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 130–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_10

López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst., 449–461. https://doi.org/10.1016/j.future.2019.02.047

Manuali, C., et al.: Efficient workload distribution bridging HTC and HPC in scientific computing. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 345–357. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_27

Martí-Bonmatí, L., et al.: PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur. Radiol. Exp. 4(1), 1–11 (2020). https://doi.org/10.1186/s41747-020-00150-9

Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem