- -

Seamlessly Managing HPC Workloads Through Kubernetes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Seamlessly Managing HPC Workloads Through Kubernetes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Huguet, Sergio es_ES
dc.contributor.author Segrelles Quilis, José Damián es_ES
dc.contributor.author Kasztelnik, Marek es_ES
dc.contributor.author Bubak, Marian es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.date.accessioned 2022-01-18T08:12:11Z
dc.date.available 2022-01-18T08:12:11Z
dc.date.issued 2020-06-25 es_ES
dc.identifier.isbn 978-3-030-59850-1 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179810
dc.description.abstract [EN] This paper describes an approach to integrate the jobs management of High Performance Computing (HPC) infrastructures in cloud architectures by managing HPC workloads seamlessly from the cloud job scheduler. The paper presents hpc-connector, an open source tool that is designed for managing the full life cycle of jobs in the HPC infrastructure from the cloud job scheduler interacting with the workload manager of the HPC system. The key point is that, thanks to running hpc-connector in the cloud infrastructure, it is possible to reflect in the cloud infrastructure, the execution of a job running in the HPC infrastructure managed by hpc-connector. If the user cancels the cloud-job, as hpc-connector catches Operating System (OS) signals (for example, SIGINT), it will cancel the job in the HPC infrastructure too. Furthermore, it can retrieve logs if requested. Therefore, by using hpc-connector, the cloud job scheduler can manage the jobs in the HPC infrastructure without requiring any special privilege, as it does not need changes on the Job scheduler. Finally, we perform an experiment training a neural network for automated segmentation of Neuroblastoma tumours in the Prometheus supercomputer using hpc-connector as a batch job from a Kubernetes infrastructure. es_ES
dc.description.sponsorship The work presented in this article has been partially funded by the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat Valenciana 2014¿2020, with reference IDIFEDER/2018/032 (High-Performance Algorithms for the Modeling, Simulation and early Detection of diseases in Personalized Medicine). The work is also co-funded by PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer personalised diaGnosis and prognosis, empowered by imaging biomarkers) a Horizon 2020 RIA project funded under the topic SC1-DTH-07-2018 by the European Commission, with grant agreement no: 826494. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof High Performance Computing es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;12321 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integrating cloud and HPC es_ES
dc.subject Kubernetes es_ES
dc.subject Docker and Singularity containers es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Seamlessly Managing HPC Workloads Through Kubernetes es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-59851-8_20 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826494/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F032//ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation López-Huguet, S.; Segrelles Quilis, JD.; Kasztelnik, M.; Bubak, M.; Blanquer Espert, I. (2020). Seamlessly Managing HPC Workloads Through Kubernetes. Springer. 310-320. https://doi.org/10.1007/978-3-030-59851-8_20 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename ISC High Performance 2020 es_ES
dc.relation.conferencedate Junio 21-25,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-59851-8_20 es_ES
dc.description.upvformatpinicio 310 es_ES
dc.description.upvformatpfin 320 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\420111 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020 es_ES
dc.description.references Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020 es_ES
dc.description.references Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020 es_ES
dc.description.references High Performance Computing and deep learning in medicine: Enhancing physicians, helping patients. https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients. Accessed 07 May 2020 es_ES
dc.description.references Medical Imaging Gets an AI Boost. https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/. Accessed 07 May 2020 es_ES
dc.description.references Bhatnagar, S.: An audit of malignant solid tumors in infants and neonates. J. Neonatal Surg. 1, 5 (2012) es_ES
dc.description.references Cabellos, L., Campos, I., Fernández-Del-Castillo, E., Owsiak, M., Palak, B., Płóciennik, M.: Scientific workflow orchestration interoperating HTC and HPC resources. Comput. Phys. Commun. (2011). https://doi.org/10.1016/j.cpc.2010.12.020 es_ES
dc.description.references Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., et al.: Metrics for heterogeneous scientific workflows: a case study of an earthquake science application. Int. J. High Perform. Comput. Appl. (2011). https://doi.org/10.1177/1094342011414743 es_ES
dc.description.references Chen, S., He, Z., Han, X., He, X., et al.: How big data and high-performance computing drive brain science (2019). https://doi.org/10.1016/j.gpb.2019.09.003 es_ES
dc.description.references Cyfronet Krakow, P.: Prometheus supercomputer. www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html. Accessed 07 May 2020 es_ES
dc.description.references Gulo, C.A.S.J., Sementille, A.C., Tavares, J.M.R.S.: Techniques of medical image processing and analysis accelerated by high-performance computing: a systematic literature review. J. Real-Time Image Process. 16(6), 1891–1908 (2017). https://doi.org/10.1007/s11554-017-0734-z es_ES
dc.description.references Hussain, T., Haider, A., Shafique, M., Taleb Ahmed, A.: A high-performance system architecture for medical imaging (2019). https://doi.org/10.5772/intechopen.83581 es_ES
dc.description.references Ivanova, D., Borovska, P., Zahov, S.: Development of PaaS using AWS and Terraform for medical imaging analytics. In: AIP Conference Proceedings (2018). https://doi.org/10.1063/1.5082133 es_ES
dc.description.references Jamalian, S., Rajaei, H.: Data-intensive HPC tasks scheduling with SDN to enable HPC-as-a-service. In: Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 596–603. Institute of Electrical and Electronics Engineers Inc., August 2015. https://doi.org/10.1109/CLOUD.2015.85 es_ES
dc.description.references Kao, H.Y., et al.: Cloud-based service information system for evaluating quality of life after breast cancer surgery. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0139252 es_ES
dc.description.references Kovacs, L., Kovacs, R., Hajdu, A.: High performance computing in medical image analysis HuSSaR, June 2018. http://arxiv.org/abs/1806.06171 es_ES
dc.description.references Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459 es_ES
dc.description.references López-Huguet, S., García-Castro, F., Alberich-Bayarri, A., Blanquer, I.: A cloud architecture for the execution of medical imaging biomarkers. In: Rodrigues, J., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 130–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_10 es_ES
dc.description.references López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst., 449–461. https://doi.org/10.1016/j.future.2019.02.047 es_ES
dc.description.references Manuali, C., et al.: Efficient workload distribution bridging HTC and HPC in scientific computing. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 345–357. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_27 es_ES
dc.description.references Martí-Bonmatí, L., et al.: PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur. Radiol. Exp. 4(1), 1–11 (2020). https://doi.org/10.1186/s41747-020-00150-9 es_ES
dc.description.references Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem