Mostrar el registro sencillo del ítem
dc.contributor.author | López-Huguet, Sergio | es_ES |
dc.contributor.author | Segrelles Quilis, José Damián | es_ES |
dc.contributor.author | Kasztelnik, Marek | es_ES |
dc.contributor.author | Bubak, Marian | es_ES |
dc.contributor.author | Blanquer Espert, Ignacio | es_ES |
dc.date.accessioned | 2022-01-18T08:12:11Z | |
dc.date.available | 2022-01-18T08:12:11Z | |
dc.date.issued | 2020-06-25 | es_ES |
dc.identifier.isbn | 978-3-030-59850-1 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179810 | |
dc.description.abstract | [EN] This paper describes an approach to integrate the jobs management of High Performance Computing (HPC) infrastructures in cloud architectures by managing HPC workloads seamlessly from the cloud job scheduler. The paper presents hpc-connector, an open source tool that is designed for managing the full life cycle of jobs in the HPC infrastructure from the cloud job scheduler interacting with the workload manager of the HPC system. The key point is that, thanks to running hpc-connector in the cloud infrastructure, it is possible to reflect in the cloud infrastructure, the execution of a job running in the HPC infrastructure managed by hpc-connector. If the user cancels the cloud-job, as hpc-connector catches Operating System (OS) signals (for example, SIGINT), it will cancel the job in the HPC infrastructure too. Furthermore, it can retrieve logs if requested. Therefore, by using hpc-connector, the cloud job scheduler can manage the jobs in the HPC infrastructure without requiring any special privilege, as it does not need changes on the Job scheduler. Finally, we perform an experiment training a neural network for automated segmentation of Neuroblastoma tumours in the Prometheus supercomputer using hpc-connector as a batch job from a Kubernetes infrastructure. | es_ES |
dc.description.sponsorship | The work presented in this article has been partially funded by the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat Valenciana 2014¿2020, with reference IDIFEDER/2018/032 (High-Performance Algorithms for the Modeling, Simulation and early Detection of diseases in Personalized Medicine). The work is also co-funded by PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer personalised diaGnosis and prognosis, empowered by imaging biomarkers) a Horizon 2020 RIA project funded under the topic SC1-DTH-07-2018 by the European Commission, with grant agreement no: 826494. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | High Performance Computing | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;12321 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Integrating cloud and HPC | es_ES |
dc.subject | Kubernetes | es_ES |
dc.subject | Docker and Singularity containers | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Seamlessly Managing HPC Workloads Through Kubernetes | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-59851-8_20 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/826494/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F032//ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | López-Huguet, S.; Segrelles Quilis, JD.; Kasztelnik, M.; Bubak, M.; Blanquer Espert, I. (2020). Seamlessly Managing HPC Workloads Through Kubernetes. Springer. 310-320. https://doi.org/10.1007/978-3-030-59851-8_20 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | ISC High Performance 2020 | es_ES |
dc.relation.conferencedate | Junio 21-25,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-59851-8_20 | es_ES |
dc.description.upvformatpinicio | 310 | es_ES |
dc.description.upvformatpfin | 320 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\420111 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020 | es_ES |
dc.description.references | Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020 | es_ES |
dc.description.references | Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020 | es_ES |
dc.description.references | High Performance Computing and deep learning in medicine: Enhancing physicians, helping patients. https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients. Accessed 07 May 2020 | es_ES |
dc.description.references | Medical Imaging Gets an AI Boost. https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/. Accessed 07 May 2020 | es_ES |
dc.description.references | Bhatnagar, S.: An audit of malignant solid tumors in infants and neonates. J. Neonatal Surg. 1, 5 (2012) | es_ES |
dc.description.references | Cabellos, L., Campos, I., Fernández-Del-Castillo, E., Owsiak, M., Palak, B., Płóciennik, M.: Scientific workflow orchestration interoperating HTC and HPC resources. Comput. Phys. Commun. (2011). https://doi.org/10.1016/j.cpc.2010.12.020 | es_ES |
dc.description.references | Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., et al.: Metrics for heterogeneous scientific workflows: a case study of an earthquake science application. Int. J. High Perform. Comput. Appl. (2011). https://doi.org/10.1177/1094342011414743 | es_ES |
dc.description.references | Chen, S., He, Z., Han, X., He, X., et al.: How big data and high-performance computing drive brain science (2019). https://doi.org/10.1016/j.gpb.2019.09.003 | es_ES |
dc.description.references | Cyfronet Krakow, P.: Prometheus supercomputer. www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html. Accessed 07 May 2020 | es_ES |
dc.description.references | Gulo, C.A.S.J., Sementille, A.C., Tavares, J.M.R.S.: Techniques of medical image processing and analysis accelerated by high-performance computing: a systematic literature review. J. Real-Time Image Process. 16(6), 1891–1908 (2017). https://doi.org/10.1007/s11554-017-0734-z | es_ES |
dc.description.references | Hussain, T., Haider, A., Shafique, M., Taleb Ahmed, A.: A high-performance system architecture for medical imaging (2019). https://doi.org/10.5772/intechopen.83581 | es_ES |
dc.description.references | Ivanova, D., Borovska, P., Zahov, S.: Development of PaaS using AWS and Terraform for medical imaging analytics. In: AIP Conference Proceedings (2018). https://doi.org/10.1063/1.5082133 | es_ES |
dc.description.references | Jamalian, S., Rajaei, H.: Data-intensive HPC tasks scheduling with SDN to enable HPC-as-a-service. In: Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 596–603. Institute of Electrical and Electronics Engineers Inc., August 2015. https://doi.org/10.1109/CLOUD.2015.85 | es_ES |
dc.description.references | Kao, H.Y., et al.: Cloud-based service information system for evaluating quality of life after breast cancer surgery. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0139252 | es_ES |
dc.description.references | Kovacs, L., Kovacs, R., Hajdu, A.: High performance computing in medical image analysis HuSSaR, June 2018. http://arxiv.org/abs/1806.06171 | es_ES |
dc.description.references | Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459 | es_ES |
dc.description.references | López-Huguet, S., García-Castro, F., Alberich-Bayarri, A., Blanquer, I.: A cloud architecture for the execution of medical imaging biomarkers. In: Rodrigues, J., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 130–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_10 | es_ES |
dc.description.references | López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst., 449–461. https://doi.org/10.1016/j.future.2019.02.047 | es_ES |
dc.description.references | Manuali, C., et al.: Efficient workload distribution bridging HTC and HPC in scientific computing. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 345–357. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_27 | es_ES |
dc.description.references | Martí-Bonmatí, L., et al.: PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur. Radiol. Exp. 4(1), 1–11 (2020). https://doi.org/10.1186/s41747-020-00150-9 | es_ES |
dc.description.references | Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3 | es_ES |