Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020
Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020
Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020
[+]
Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#security. Accessed 07 May 2020
Cloud access to mammograms enables earlier breast cancer detection. https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection. Accessed 07 May 2020
Getting to the heart of the HPC and AI the edge in healthcare. https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/. Accessed 07 May 2020
High Performance Computing and deep learning in medicine: Enhancing physicians, helping patients. https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients. Accessed 07 May 2020
Medical Imaging Gets an AI Boost. https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/. Accessed 07 May 2020
Bhatnagar, S.: An audit of malignant solid tumors in infants and neonates. J. Neonatal Surg. 1, 5 (2012)
Cabellos, L., Campos, I., Fernández-Del-Castillo, E., Owsiak, M., Palak, B., Płóciennik, M.: Scientific workflow orchestration interoperating HTC and HPC resources. Comput. Phys. Commun. (2011). https://doi.org/10.1016/j.cpc.2010.12.020
Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., et al.: Metrics for heterogeneous scientific workflows: a case study of an earthquake science application. Int. J. High Perform. Comput. Appl. (2011). https://doi.org/10.1177/1094342011414743
Chen, S., He, Z., Han, X., He, X., et al.: How big data and high-performance computing drive brain science (2019). https://doi.org/10.1016/j.gpb.2019.09.003
Cyfronet Krakow, P.: Prometheus supercomputer. www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html. Accessed 07 May 2020
Gulo, C.A.S.J., Sementille, A.C., Tavares, J.M.R.S.: Techniques of medical image processing and analysis accelerated by high-performance computing: a systematic literature review. J. Real-Time Image Process. 16(6), 1891–1908 (2017). https://doi.org/10.1007/s11554-017-0734-z
Hussain, T., Haider, A., Shafique, M., Taleb Ahmed, A.: A high-performance system architecture for medical imaging (2019). https://doi.org/10.5772/intechopen.83581
Ivanova, D., Borovska, P., Zahov, S.: Development of PaaS using AWS and Terraform for medical imaging analytics. In: AIP Conference Proceedings (2018). https://doi.org/10.1063/1.5082133
Jamalian, S., Rajaei, H.: Data-intensive HPC tasks scheduling with SDN to enable HPC-as-a-service. In: Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, pp. 596–603. Institute of Electrical and Electronics Engineers Inc., August 2015. https://doi.org/10.1109/CLOUD.2015.85
Kao, H.Y., et al.: Cloud-based service information system for evaluating quality of life after breast cancer surgery. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0139252
Kovacs, L., Kovacs, R., Hajdu, A.: High performance computing in medical image analysis HuSSaR, June 2018. http://arxiv.org/abs/1806.06171
Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459
López-Huguet, S., García-Castro, F., Alberich-Bayarri, A., Blanquer, I.: A cloud architecture for the execution of medical imaging biomarkers. In: Rodrigues, J., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 130–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_10
López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst., 449–461. https://doi.org/10.1016/j.future.2019.02.047
Manuali, C., et al.: Efficient workload distribution bridging HTC and HPC in scientific computing. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 345–357. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_27
Martí-Bonmatí, L., et al.: PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur. Radiol. Exp. 4(1), 1–11 (2020). https://doi.org/10.1186/s41747-020-00150-9
Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3
[-]