- -

On totally nonpositive matrices associated with a triple negatively realizable

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On totally nonpositive matrices associated with a triple negatively realizable

Mostrar el registro completo del ítem

Cantó Colomina, B.; Cantó Colomina, R.; Urbano Salvador, AM. (2021). On totally nonpositive matrices associated with a triple negatively realizable. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-25. https://doi.org/10.1007/s13398-021-01073-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180470

Ficheros en el ítem

Metadatos del ítem

Título: On totally nonpositive matrices associated with a triple negatively realizable
Autor: Cantó Colomina, Begoña Cantó Colomina, Rafael Urbano Salvador, Ana María
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let A is an element of R-nxn be a totally nonpositive matrix (t.n.p.) with rank r and principal rank p, that is, every minor of A is nonpositive and p is the size of the largest invertible principal submatrix of A. ...[+]
Palabras clave: Totally nonpositive matrix , Principal rank , Triple negatively realizable , Linear algebra
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-021-01073-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-021-01073-9
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/
Agradecimientos:
This research was supported by the Ministerio de Economía y Competividad under the Spanish DGI Grant MTM2017-85669-P-AR.
Tipo: Artículo

References

Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987). https://doi.org/10.1016/0024-3795(87)90313-2

Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997)

Bhatia, R.: Positive Definite Matrices, Princeton Ser. Appl. Math. (2007) [+]
Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987). https://doi.org/10.1016/0024-3795(87)90313-2

Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997)

Bhatia, R.: Positive Definite Matrices, Princeton Ser. Appl. Math. (2007)

Cantó, R., Urbano, A.M.: On the maximum rank of totally nonnegative matrices. Linear Algebra Appl. 551, 125–146 (2018). https://doi.org/10.1016/j.laa.2018.03.045

Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: LDU-factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30, 777–782 (2008). https://doi.org/10.1137/060662897

Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009). https://doi.org/10.1016/j.laa.2009.07.020

Cantó, R., Ricarte, B., Urbano, A.M.: Quasi-$$LDU$$ factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013). https://doi.org/10.1016/j.laa.2012.06.010

Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi-$$LDU$$ form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014). https://doi.org/10.1016/j.laa.2013.11.002

Cantó, R., Peláez, M.J., Urbano, A.M.: On the characterization of totally nonpositive matrices. SeMA J. 73, 347–368 (2016). https://doi.org/10.1007/s40324-016-0073-1

Fallat, S.M., van den Driessche, P.: On Matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000). http://math.technion.ac.il/iic/ela

Fallat, S.M., Gekhtman, M.I.: Jordan structure of totally nonnegative matrices. Can. J. Math. 57, 82–98 (2005). https://doi.org/10.4153/CJM-2005-004-0

Fallat, S.M, Johnson, C.R.: Totally Nonnegative Matrices. Princeton Ser. Appl. Math. (2011)

Fallat, S.M., Gekhtman, M.I., Johnson, C.R.: Spectral structures of irreducible totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 22, 627–645 (2000). https://doi.org/10.1137/S0895479800367014

Gasca, M., Micchelli, C.A.: Total Positivity and Applications. Math. Appl., 359, Kluwer Academic Publishers, Dordrecht (1996)

Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010). https://doi.org/10.1016/j.laa.2009.12.043

Karlin, S.: Total Nonpositivity, vol. I. Stanford University Press, Stanford (1968)

Parthasarathy, T., Ravindran, G.: N-matrices. Linear Algebra Appl. 139, 89–102 (1990). https://doi.org/10.1016/0024-3795(90)90390-X

Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2010)

Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972). https://www.jstor.org/stable/2099622

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem