- -

Estado del arte de la educación en automática

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estado del arte de la educación en automática

Mostrar el registro completo del ítem

Muñoz De La Peña, D.; Domínguez, M.; Gomez-Estern, F.; Reinoso, Ó.; Torres, F.; Dormido, S. (2022). Estado del arte de la educación en automática. Revista Iberoamericana de Automática e Informática industrial. 19(2):117-131. https://doi.org/10.4995/riai.2022.16989

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182818

Ficheros en el ítem

Metadatos del ítem

Título: Estado del arte de la educación en automática
Otro titulo: State of the art of control education
Autor: Muñoz de la Peña, David Domínguez, Manuel Gomez-Estern, Fabio Reinoso, Óscar Torres, Fernando Dormido, Sebastián
Fecha difusión:
Resumen:
[EN] Control education is a mature area in which many professors and researchers have worked hard to face the challenge of providing a versatile education, with a strong scientific base. All this without losing sight of ...[+]


[ES] La educación en automática es un área madura en la que multitud de profesores e investigadores han trabajado intensamente para afrontar el reto de proporcionar una educación versátil, con una fuerte base cientí­fica. ...[+]
Palabras clave: Control engineering curriculum , E-learning , Distance learning and learning management systems , Experimental platforms , Automatic evaluation , Long-life learning , Teaching tools and laboratories , Interactive tools , Virtual and remote laboratories , Teaching methodologies , Industry relations , Curricula del ingeniero de control , Educación a distancia y sistemas de gestión del aprendizaje , Evaluación automática , Formación continua , Herramientas docentes y laboratorios , Herramientas interactivas , Laboratorios virtuales y remotos , Prácticas docentes , Relaciones con la industria , Entornos de experimentación
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16989
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16989
Tipo: Artículo

References

Akçayır, G., Akçayır, M., 2018. The flipped classroom: A review of its advantages and challenges. Computers & Education 126, 334-345. https://doi.org/10.1016/j.compedu.2018.07.021

Aljaloud, A., Gromik, N., Billingsley, W., Kwan, P., 01 2015. Research trends in student response systems: A literature review. International Journal of Learning Technology 10, 313. https://doi.org/10.1504/IJLT.2015.074073

Antsaklis, P., Basar, T., DeCarlo, R., McClamroch, N., Spong, M., Yurkovich, S., 1998. NSF/CSS workshop on new directions in control engineering education. National Science Foundation and IEEE Control Systems Society, Tech. rep. [+]
Akçayır, G., Akçayır, M., 2018. The flipped classroom: A review of its advantages and challenges. Computers & Education 126, 334-345. https://doi.org/10.1016/j.compedu.2018.07.021

Aljaloud, A., Gromik, N., Billingsley, W., Kwan, P., 01 2015. Research trends in student response systems: A literature review. International Journal of Learning Technology 10, 313. https://doi.org/10.1504/IJLT.2015.074073

Antsaklis, P., Basar, T., DeCarlo, R., McClamroch, N., Spong, M., Yurkovich, S., 1998. NSF/CSS workshop on new directions in control engineering education. National Science Foundation and IEEE Control Systems Society, Tech. rep.

Aracil, J., 2010. Fundamentos, método e historia de la Ingeniería: una mirada al mundo de los Ingenieros. Síntesis.

Arevalo, V., Vicente-del Rey, J., Garcia-Morales, I., Rivas-Blanco, I., 2020. Minivideos tutorials to reinforce the learning of basic concepts for an automatic control course. Revista Iberoamericana de Automática e Informática Industrial17 (2), 107-115. https://doi.org/10.4995/riai.2020.12156

Åström, K. J., 1999. Automatic control-the hidden technology. In: Advances in Control. Springer, pp. 1-28. https://doi.org/10.1007/978-1-4471-0853-5_1

Åström, K. J., Kumar, P. R., 2014. Control: A perspective. Automatica 50 (1), 3-43. https://doi.org/10.1016/j.automatica.2013.10.012

Becerra-Alonso, D., Lopez-Cobo, I., Gómez-Rey, P., Fernández-Navarro, F., Barbera, E., 2020. Eduzinc: A tool for the creation and assessment of student learning activities in complex open, online, and flexible learning environments. Distance Education 41 (1), 86-105. https://doi.org/10.1080/01587919.2020.1724769

Bers, M. U., Portsmore, M., 2005. Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology 14 (1), 59-73. https://doi.org/10.1007/s10956-005-2734-1

Bristol, E., 1986. An industrial point of view on control teaching and theory. IEEE Control Systems Magazine 6 (1), 24-27. https://doi.org/10.1109/MCS.1986.1105041

Candelas, F., Torres, F., Ortiz, F., Gil, P., Pomares, J., Puente, S., 2003. Teaching and learning robotics with internet teleoperation. In: Proc. Second International Conference on Multimedia and Information & Communication Technologies in Education. Vol. 3. pp. 1827-1831.

Chandrasekaran, S., Stojcevski, A., Littlefair, G., Joordens, M., 2013. Projectoriented design-based learning: aligning students' views with industry needs. International Journal of Engineering Education 29 (5), 1109-1118.

Chen, J., Kolmos, A., Du, X., 2021. Forms of implementation and challenges of PBL in engineering education: a review of literature. European Journal of Engineering Education 46 (1), 90-115. https://doi.org/10.1080/03043797.2020.1718615

Chung, C. C., Cartwright, C., Cole, M., 2014. Assessing the impact of an autonomous robotics competition for STEM education. Journal of STEM Education: Innovations and Research 15 (2).

del Pozo, A., Escaño, J., Muñoz de la Peña, D., Gómez-Estern, F., 2013. 3D simulator of industrial systems for control education with automated assessment. IFAC Proceedings Volumes 46 (17), 321-326. https://doi.org/10.3182/20130828-3-UK-2039.00070

Dormido, S., 2004. Control learning: Present and future. Annual Reviews in control 28 (1), 115-136. https://doi.org/10.1016/j.arcontrol.2003.12.002

Díaz, J. M., Costa-Castelló, R., Dormido, S., 2021. Un enfoque interactivo para el análisis y diseño de sistemas de control utilizando el método del lugar de las raíces. Revista Iberoamericana de Automática e Informática industrial 18 (2), 172-188. https://doi.org/10.4995/riai.2020.13811

Farias, G., Muñoz de la Peña, D., Gómez-Estern, F., De la Torre, L., Sánchez, C., Dormido, S., 2016. Adding automatic evaluation to interactive virtual labs. Interactive Learning Environments 24 (7), 1456-1476. https://doi.org/10.1080/10494820.2015.1022559

Faure, E., Herrera, F., Kaddoura, A., Lopes, H., Petrovski, A. V., Rahnema, M., Ward, F., 1972. Learning to be: The world of education today and tomorrow. Unesco.

Foulis, C. Y., Papadopoulou, S., 2018. A portable low-cost arduino-based laboratory kit for control education. In: 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, pp. 435-435. https://doi.org/10.1109/CONTROL.2018.8516817

Frank, M., Lavy, I., Elata, D., 2003. Implementing the project-based learning approach in an academic engineering course. International Journal of Technology and Design Education 13 (3), 273-288. https://doi.org/10.1023/A:1026192113732

Froyd, J. E., Wankat, P. C., Smith, K. A., 2012. Five major shifts in 100 years of engineering education. Proceedings of the IEEE 100 (Special Centennial Issue), 1344-1360. https://doi.org/10.1109/JPROC.2012.2190167

Göl, Ö., Nafalski, A., 2007. Collaborative learning in engineering education. Global J. of Engng. Educ 11 (2).

Harrington, C., Zakrajsek, T. D., 2017. Dynamic lecturing: Research-based strategies to enhance lecture effectiveness. Stylus Publishing, LLC.

Hartikainen, S., Rintala, H., Pylväs, L., Nokelainen, P., 2019. The concept of active learning and the measurement of learning outcomes: A review of research in engineering higher education. Education Sciences 9 (4). https://doi.org/10.3390/educsci9040276

Heradio, R., de la Torre, L., Dormido, S., 2016a. Virtual and remote labs in control education: A survey. Annual Reviews in Control 42, 1-10. https://doi.org/10.1016/j.arcontrol.2016.08.001

Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., Dormido, S., 2016b. Virtual and remote labs in education: A bibliometric analysis. Computers & Education 98, 14-38. https://doi.org/10.1016/j.compedu.2016.03.010

Huang, R., Ritzhaupt, A. D., Sommer, M., Zhu, J., Stephen, A., Valle, N., Hampton, J., Li, J., 2020. The impact of gamification in educational settings on student learning outcomes: A meta-analysis. Educational Technology Research and Development 68 (4), 1875-1901. https://doi.org/10.1007/s11423-020-09807-z

Keady, G., Fitz-Gerald, G., Gamble, G., Sangwin, C., 2012. Computer-aided assessment in mathematical sciences. In: Proceedings of The Australian Conference on Science and Mathematics Education.

Kolberg, E., Orlev, N., 2001. Robotics learning as a tool for integrating science technology curriculum in K-12 schools. In: 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193). Vol. 1. IEEE, pp. T2E-12.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., Van den Hof, P., 2017. Systems & control for the future of humanity, research agenda: Current and future roles, impact and grand challenges. Annual Reviews in Control 43, 1-64. https://doi.org/10.1016/j.arcontrol.2017.04.001

Lehmann, M., Christensen, P., Du, X., Thrane, M., 2008. Problem-oriented and project-based learning (POPBL) as an innovative learning strategy for sustainable development in engineering education. European Journal of Engineering Education 33 (3), 283-295. https://doi.org/10.1080/03043790802088566

Lerma, E., Costa-Castelló, R., Griñó, R., Sanchis, C., 2021. Herramientas para la docencia de control digital en grados de ingeniería. Revista Iberoamericana de Automática e Informática industrial 18 (2), 189-199. https://doi.org/10.4995/riai.2020.13756

Membrillo-Hernández, J., de Jesús Ramírez-Cadena, M., Ramírez-Medrano, A., García-Castelán, R. M., García-García, R., 2021. Implementation of the challenge-based learning approach in academic engineering programs. International Journal on Interactive Design and Manufacturing 15 (2), 287-298. https://doi.org/10.1007/s12008-021-00755-3

Muñoz de la Peña, D., Gómez-Estern, F., Dormido, S., 2012. A new internet tool for automatic evaluation in control systems and programming. Computers & Education 59 (2), 535-550. https://doi.org/10.1016/j.compedu.2011.12.016

Murray, R. M., Astrom, K. J., Boyd, S. P., Brockett, R. W., Stein, G., 2003. Future directions in control in an information-rich world. IEEE Control Systems Magazine 23 (2), 20-33. https://doi.org/10.1109/MCS.2003.1188769

Rajkumar, K., Srinivas, D., Anuradha, P., RajeshwarRao, A., 2021. Problemoriented and project-based learning (POPPL) as an innovative learning strategy for sustainable development in engineering education. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.796

Reguera, P., García, D., Domínguez, M., Prada, M., Alonso, S., 2015. A low-cost open source hardware in control education. case study: Arduinofeedback ms-150. IFAC-PapersOnLine 48 (29), 117-122. https://doi.org/10.1016/j.ifacol.2015.11.223

Robinson, M., 2005. Robotics-driven activities: Can they improve middle school science learning? Bulletin of Science, Technology & Society 25 (1), 73-84. https://doi.org/10.1177/0270467604271244

Rossiter, A., Serbezov, A., Visioli, A., Žáková, K., Huba, M., 2020. A survey of international views on a first course in systems and control for engineering undergraduates. IFAC Journal of Systems and Control 13, 100092. https://doi.org/10.1016/j.ifacsc.2020.100092

Rossiter, J., 2019. Evaluation of software tools for formative assessment of control topics. IFAC-PapersOnLine 52 (9), 292-297. https://doi.org/10.1016/j.ifacol.2019.08.223

Rossiter, J., Pasik-Duncan, B., Dormido, S., Vlacic, L., Jones, B., Murray, R., 2018. A survey of good practice in control education. European Journal of Engineering Education 43 (6), 801-823. https://doi.org/10.1080/03043797.2018.1428530

Samad, T., Annaswamy, A. M., 2013. The Impact of Control Technology, 2nd edition. IEEE Control Systems Society.

Sánchez, C., Muñoz de la Peña, D., Gómez-Estern, F., 2020. Automated generation of control design benchmark problems for computer-assessed education with doctus. Revista Iberoamericana de Automática e Informática Industrial 17 (1), 1-9. https://doi.org/10.4995/riai.2019.11243

Sánchez, J., Dormido, S., Esquembre, F., 2005. The learning of control concepts using interactive tools. Computer Applications in Engineering Education 13 (1), 84-98. https://doi.org/10.1002/cae.20033

Soriano, A., Marin, L., Valles, M., Valera, A., Albertos, P., 2014. Low cost platform for automatic control education based on open hardware. IFAC Proceedings Volumes 47 (3), 9044-9050. https://doi.org/10.3182/20140824-6-ZA-1003.01909

Stein, G., 2003. Respect the unstable. IEEE Control systems magazine 23 (4), 12-25. https://doi.org/10.1109/MCS.2003.1213600

Wagner, S. P., 1998. Robotics and children: Science achievement and problem solving. Journal of Computing in Childhood Education 9 (2), 149-92.

Ziegler, J. G., Nichols, N. B., et al., 1942. Optimum settings for automatic controllers. trans. ASME 64 (11).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem