- -

Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Munoz-Ceballos, Nelson David es_ES
dc.contributor.author Suarez-Rivera, Guiovanny es_ES
dc.date.accessioned 2022-05-24T07:06:04Z
dc.date.available 2022-05-24T07:06:04Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182819
dc.description.abstract [ES] En este artículo se presenta una revisión de literatura sobre criterios de desempeño para evaluar la navegación de un robot móvil, los cuales ayudan a comparar cuantitativamente diferentes características, como: el sistema de control, la navegación en diferentes entornos de trabajo, el desempeño energético, etc. El interés en criterios de desempeño y procedimiento de comparación (benchmarks) ha crecido en los últimos años, principalmente por investigadores y fabricantes de robots que buscan satisfacer la creciente demanda de aplicaciones en el mercado global, cada vez más competido. El conjunto de criterios está compuesto por métricas, índices, mediciones y benchmarks, desde el más básico como contabilizar el éxito en alcanzar la meta, pasando por otros más elaborados como los de seguridad en la trayectoria generada en la evasión de obstáculos, hasta criterios que comparan aspectos más complejos de la navegación como el consumo energético. Finalmente, se describen algunos benchmarks y software para simulación y comparación de algoritmos de navegación. Estos criterios se constituyen en una importante herramienta para diseñadores e investigadores en robótica móvil. es_ES
dc.description.abstract [EN] This paper presents a literature review on performance criteria to evaluate the navigation of a mobile robot, which help to quantitatively compare different characteristics such as the control system, navigation in different work environments, energy performance, etc. The Interest in performance criteria and benchmarks has grown in recent years, mainly by researchers and robot manufacturers seeking to meet the growing demand for applications in the increasingly competitive global market. The set of criteria is made up of metrics, indexes, measurements, and benchmarks, from the most basic such as counting the success in reaching the goal, and others more elaborate such as security on the trajectory generated avoiding obstacles, to criteria that compare complex aspects of navigation such as energy consumption. Finally, some benchmarks and software for simulation and comparison of navigation algorithms are described. These criteria are an important tool for designers and researchers in mobile robotics. es_ES
dc.description.sponsorship Los autores agradecen al Politécnico Colombiano Jaime Isaza Cadavid y la Universidad Nacional de Colombia sede Medellín por el apoyo recibido. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Mobile robot es_ES
dc.subject Control system es_ES
dc.subject Trajectory tracking es_ES
dc.subject Performance index es_ES
dc.subject Energy es_ES
dc.subject Navigation algorithm es_ES
dc.subject Robot Móvil es_ES
dc.subject Sistema de Control es_ES
dc.subject Seguimiento de Trayectoria es_ES
dc.subject Índice de Desempeño es_ES
dc.subject Energía es_ES
dc.subject Algoritmo de Navegación es_ES
dc.title Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión es_ES
dc.title.alternative Performance criteria for evaluating mobile robot navigation algorithms: a review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16427
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Munoz-Ceballos, ND.; Suarez-Rivera, G. (2022). Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión. Revista Iberoamericana de Automática e Informática industrial. 19(2):132-143. https://doi.org/10.4995/riai.2022.16427 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16427 es_ES
dc.description.upvformatpinicio 132 es_ES
dc.description.upvformatpfin 143 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16427 es_ES
dc.description.references Abdulwahhab, O. W., Abbas, N. H., 2018. Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot. International Journal of Control, Automation and Systems 16(6), 2790-2800. DOI:10.1007/s12555-017-0234-8 https://doi.org/10.1007/s12555-017-0234-8 es_ES
dc.description.references Algabri, M., Mathkour, H., Ramdane, H., Alsulaiman, M., 2015. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput. Hum. Behav 50, 42-56. DOI: 10.1016/j.chb.2015.03.062 https://doi.org/10.1016/j.chb.2015.03.062 es_ES
dc.description.references ANSI-American National Standards Institute, 2019. Safety Standard for Driverless, Automatic Guided Industrial Vehicles and Automated Functions of Manned Industrial Vehicles, ANSI/ITSDF B56.5-2019 (Washington, DC: Industrial Truck Standards Development Foundation). es_ES
dc.description.references Armah S., Yi S., Lebdeh T. A., 2016. Implementation of autonomous navigation algorithms on two-wheeled ground mobile robot. Amer. J. Eng. Appl. Sci. 78, 36-48. DOI:10.3844/ajeassp.2014.149.164 https://doi.org/10.3844/ajeassp.2014.149.164 es_ES
dc.description.references ASTM-American Society for Testing and Materials. 2021a. Standard Test Method for Confirming the Docking Performance of A-UGVs (ASTM F3499-21) DOI: 10.1520/F3499-21 https://doi.org/10.1520/F3499-21 es_ES
dc.description.references ASTM-American Society for Testing and Materials. 2021b. Standard Test Method for Navigation: Defined Area (ASTM F3244-21). DOI:10.1520/F3244-21 https://doi.org/10.1520/F3244-21 es_ES
dc.description.references Bayón, C., Delgado-Oleas, G., Tagliamonte, N.L., Asseldonk, E. van, Rocon, E.2021. Desarrollo de BenchBalance: un sistema para la evaluación de la capacidad de equilibrio en exoesqueletos robóticos. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021, (pp. 99-103). DOI:10.17979/spudc.9788497498043.099 https://doi.org/10.17979/spudc.9788497498043.099 es_ES
dc.description.references Bessler, J., Prinsen, E. C., Prange-Lasonder, G. B., Schaake, L., Buurke, J. H. 2018. Assessing Safety and Performance Indicators in Rehabilitation Robotics. In School and symposium on advanced neurorehabilitation SSNR2018. p. 28. Baiona-España. es_ES
dc.description.references Bianchi L., Buniak E. A., Ramele R., Santos J. M., 2021. A Control Strategy for a Tethered Follower Robot for Pulmonary Rehabilitation. In: IEEE Transactions on Medical Robotics and Bionics 3(1), pp. 210-219. DOI:10.1109/TMRB.2020.3042281 es_ES
dc.description.references https://doi.org/10.1109/TMRB.2020.3042281 es_ES
dc.description.references Bostelman, R., Hong, T., Cheok, G., 2015. Navigation performance evaluation for automatic guided vehicles. In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1-6. DOI:10.1109/TePRA.2015.7219684 es_ES
dc.description.references https://doi.org/10.1109/TePRA.2015.7219684 es_ES
dc.description.references Bostelman, R., Hong, T., Marvel, J., 2016. Survey of Research for Performance Measurement of Mobile Manipulators. Journal of Research (NIST JRES), 121. DOI:10.6028/jres.121.015 https://doi.org/10.6028/jres.121.015 es_ES
dc.description.references Caruntu C., Copot C., Lazar C., Keyser R. D., 2019. Decentralized Predictive Formation Control for Mobile Robots without Communication. In: IEEE 15th Int. Conf. on Control and Automation (ICCA), pp. 555-560. Edinburgh, United Kingdom. DOI:10.1109/ICCA.2019.8899610 es_ES
dc.description.references https://doi.org/10.1109/ICCA.2019.8899610 es_ES
dc.description.references Correa F., Gallardo J., Muñoz N., Pérez R., 2016. Estudio comparativo basado en métricas para diferentes arquitecturas de navegación reactiva. Ingeniare Revista chilena de ingeniería 24(1), 46-54. DOI:10.4067/S0718-33052016000100005 https://doi.org/10.4067/S0718-33052016000100005 es_ES
dc.description.references Domański, P. D., 2020. Control Performance Assessment: Theoretical Analyses and Industrial Practice. Springer, Warsaw. DOI: 10.1007/978-3-030-23593-2 https://doi.org/10.1007/978-3-030-23593-2 es_ES
dc.description.references Ermacora G., Sartori D., Rovasenda M., Pei L., Yu W., 2020. An Evaluation Framework to Assess Autonomous Navigation Linked to Environment Complexity. In: IEEE Int. Conf. on Mechatronics and Automation (ICMA) pp. 1803-1810. Beijing. China. DOI:10.1109/ICMA49215.2020.9233862 https://doi.org/10.1109/ICMA49215.2020.9233862 es_ES
dc.description.references Farias G., Garcia G., Montenegro G., Fabregas E., Dormido-Canto S., Dormido S., 2020. Reinforcement Learning for Position Control Problem of a Mobile Robot. IEEE Access 8, 152941-152951. DOI:10.1109/ACCESS.2020.3018026 https://doi.org/10.1109/ACCESS.2020.3018026 es_ES
dc.description.references Fernandes R., Bessa M., Brandão A., 2017. Performance analysis of positioning controller for mobile robots. In: Latin American Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), pp. 1-5. Curitiba. DOI:10.1109/SBR-LARS-R.2017.8215279 es_ES
dc.description.references https://doi.org/10.1109/SBR-LARS-R.2017.8215279 es_ES
dc.description.references Graba, M., Kelouwani, S., Zeghmi, L., Amamou, A., Agbossou, K., Mohammadpour, M., 2020. Investigating the Impact of Energy Source Level on the Self-Guided Vehicle System Performances, in the Industry 4.0 Context. Sustainability 12, no. 20: 8541. DOI:10.3390/su12208541 es_ES
dc.description.references https://doi.org/10.3390/su12208541 es_ES
dc.description.references Gridnev A., Dyumin A., Voznenko T., Urvanov G. Chepin E., 2017. The Framework for robotic navigation algorithms evaluation. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 855-859, St. Petersburg, Russia. DOI:10.1109/EIConRus.2017.7910690 https://doi.org/10.1109/EIConRus.2017.7910690 es_ES
dc.description.references Heiden E., Palmieri L., Bruns L., Arras K. O., Sukhatme G. S. and Koenig S. 2021. Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots. in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4536-4543, July 2021, DOI: 10.1109/LRA.2021.3068913 es_ES
dc.description.references https://doi.org/10.1109/LRA.2021.3068913 es_ES
dc.description.references Heikkinen J. E., Minav T. and Serykh E. V., 2018. Mobile robot qualification metrics. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 878-881, Russia. DOI:10.1109/EIConRus.2018.8317228 es_ES
dc.description.references https://doi.org/10.1109/EIConRus.2018.8317228 es_ES
dc.description.references Ho D., Ben Chehida K., Miramond B. and Auguin M., 2018. Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots. In: Second IEEE International Conference on Robotic Computing (IRC), pp. 270-273. DOI:10.1109/IRC.2018.00057 es_ES
dc.description.references https://doi.org/10.1109/IRC.2018.00057 es_ES
dc.description.references Hrubý D., Marko D., Olejár M., Cviklovič V., Horňák D. 2021. Comparison of Control Algorithms by Simulating Power Consumption of Differential Drive Mobile Robot Motion Control in Vineyard Row. Acta Technologica Agriculturae,24(4) 195-201. DOI:10.2478/ata-2021-0032 es_ES
dc.description.references https://doi.org/10.2478/ata-2021-0032 es_ES
dc.description.references IEEE Institute of Electrical and Electronics Engineers, 2015. 1873-2015 IEEE Standard for Robot Map Data Representation for Navigation. pp.1-54. DOI: 10.1109/IEEESTD.2015.7300355 https://doi.org/10.1109/IEEESTD.2015.7300355 es_ES
dc.description.references ISO-International Organization for Standardization. 2016. Robotics - Performance criteria and related test methods for service robots - Part 1: Locomotion for wheeled robots (ISO 18646-1:2016). https://www.iso.org/standard/63127.html es_ES
dc.description.references ISO-International Organization for Standardization. 2019. Robotics - Performance criteria and related test methods for service robots - Part 2: Navigation (ISO 18646-2:2019). https://www.iso.org/standard/69057.html es_ES
dc.description.references Lambert P., Lapierre L. and Crestani D., 2019. An Approach for Fault Tolerant and Performance Guarantee Autonomous Robotic Mission. NASA/ESA Conference on Adaptive Hardware and Systems (AHS). pp. 87-94. DOI:10.1109/AHS.2019.00009 https://doi.org/10.1109/AHS.2019.00009 es_ES
dc.description.references Madrigal S., Muñoz N. 2019. Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117-137. DOI: 10.33571/rpolitec.v15n28a11 https://doi.org/10.33571/rpolitec.v15n28a11 es_ES
dc.description.references Majumdar A., Pavone M., 2020. How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics. In: Robotics Research. Springer Proceedings in Advanced Robotics. DOI:10.1007/978-3-030-28619-4_10 https://doi.org/10.1007/978-3-030-28619-4_10 es_ES
dc.description.references Maldonado-Romo, J., Aldape-Pérez, M., Rodríguez-Molina, A., 2021. Path Planning Generator with Metadata through a Domain Change by GAN between Physical and Virtual Environments. In: Sensors 21, no22: 7667. DOI: 10.3390/s21227667 https://doi.org/10.3390/s21227667 es_ES
dc.description.references Martins, O., Adekunle, A., Adejuyigbe, S., Adeyemi, O., Arowolo, M., 2020. Wheeled Mobile Robot Path Planning and Path Tracking Controller Algorithms: A Review. Journal of Engineering Science and Technology Review 13(3), 152 - 164. DOI:10.25103/jestr.133.17 es_ES
dc.description.references https://doi.org/10.25103/jestr.133.17 es_ES
dc.description.references Marvel, J. A., Bostelman, R., 2014. A Cross-Domain Survey of Metrics for Modelling and Evaluating Collisions. International Journal of Advanced Robotic Systems. DOI:10.5772/58846 https://doi.org/10.5772/58846 es_ES
dc.description.references Mayoral, J. C., Grimstad, L., From, P. J., Cielniak G., 2021. Integration of a Human-aware Risk-based Braking System into an Open-Field Mobile Robot. In: IEEE Int. Conference on Robotics and Automation (ICRA). pp. 2435-2442, DOI: 10.1109/ICRA48506.2021.9561522 es_ES
dc.description.references https://doi.org/10.1109/ICRA48506.2021.9561522 es_ES
dc.description.references McGuire K.N., de Croon G.C.H.E., Tuyls K., 2019. A comparative study of bug algorithms for robot navigation, Robotics and Autonomous Systems 121, 103261. DOI: 10.1016/j.robot.2019.103261 https://doi.org/10.1016/j.robot.2019.103261 es_ES
dc.description.references Mohammadpour M., Zeghmi L., Kelouwani S., Gaudreau M., Amamou A., Graba M., 2021. An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots. Energies 2021, 14, 3517. DOI: 10.3390/en14123517 https://doi.org/10.3390/en14123517 es_ES
dc.description.references Moreno, H., Saltarén, R., Carrera, I., Puglisi, L., Aracil, R., 2012. Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática industrial, 9(2), 111-122. DOI: 10.1016/j.riai.2012.02.005 es_ES
dc.description.references https://doi.org/10.1016/j.riai.2012.02.005 es_ES
dc.description.references Munoz, N. D., Valencia, J., Alvarez, A., 2014. Simulation and Assessment Educational Framework for Mobile Robot Algorithms. J. Autom. Mob. Robotics Intell. Syst., 8, 53-59. DOI:10.14313/JAMRIS_1-2014/7 https://doi.org/10.14313/JAMRIS_1-2014/7 es_ES
dc.description.references Niemueller T., Lakemeyer G., Srinivasa S., 2012. A generic robot database and its application in fault analysis and performance evaluation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 364-369, DOI: 10.1109/IROS.2012.6385940 es_ES
dc.description.references https://doi.org/10.1109/IROS.2012.6385940 es_ES
dc.description.references Norton A., Gavriel P., Yanco H., 2019. A Standard Test Method for Evaluating Navigation and Obstacle Avoidance Capabilities of AGVs and AMRs. Smart and Sustainable Manufacturing Systems 3, (2). 106-126. DOI:10.1520/SSMS20190028 https://doi.org/10.1520/SSMS20190028 es_ES
dc.description.references Norton, A., Saretsky, A., Yanco, H., 2020. Developing Metrics and Evaluation Methods for Assessing Artificial Intelligence Enabled Robots in Manufacturing. In: Proceedings from the AAAI Spring Symposium on AI and Manufacturing. es_ES
dc.description.references Pérez J., Fornas D, Marín R., Sanz P. 2018. UWSim, un Simulador Submarino Conectado a la Nube como Herramienta Educacional. Revista Iberoamericana de Automática e Informática Industrial 15, 70-78. DOI:10.4995/riai.2017.8827 https://doi.org/10.4995/riai.2017.8827 es_ES
dc.description.references Pérez-González A, Benítez-Montoya N, Jaramillo-Duque A, Cano-Quintero JB. 2021. Coverage Path Planning with Semantic Segmentation for UAV in PV Plants. Applied Sciences. 11(24):12093. DOI:10.3390/app112412093 https://doi.org/10.3390/app112412093 es_ES
dc.description.references Ponce H., Moya-Albor, E., Brieva, J., 2018. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies. In: Computational Intelligence and Neuroscience 2018, 16. DOI:10.1155/2018/4189150 https://doi.org/10.1155/2018/4189150 es_ES
dc.description.references Raiesdana, S., 2021. A Hybrid Method for Industrial Robot Navigation. Journal of Optimization in Industrial Engineering 14(1), 133-148. DOI:10.22094/joie.2020.1863337.1629 es_ES
dc.description.references Ren Y., Wang J., Zheng X., Zhao Q., Ma J., Zhao L., 2020. Research on multidimensional evaluation of tracking control strategies for self-driving vehicles. Advances in Mechanical Engineering. DOI:10.1177/1687814020912968 https://doi.org/10.1177/1687814020912968 es_ES
dc.description.references Rivera, R. G., Alvarado, R. G., Martínez-Rocamora, A., Auat Cheein, F., 2020. A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry. Sustainability 12(11), 4378. DOI:10.3390/su12114378 https://doi.org/10.3390/su12114378 es_ES
dc.description.references Rokonuzzaman, M., Mohajer, N., Nahavandi, S., Mohamed, S., 2021. Review and performance evaluation of path tracking controllers of autonomous vehicles. IET Intell Transp Syst. 15: 646- 670. DOI:10.1049/itr2.12051 https://doi.org/10.1049/itr2.12051 es_ES
dc.description.references Schreckenghost D. L., Milam T., Fong T., 2016. Techniques and tools for summarizing performance of robots operating remotely. In: 14th int. conf. on space operations. p. 2310. DOI: 10.2514/6.2016-2310 https://doi.org/10.2514/6.2016-2310 es_ES
dc.description.references Serralheiro, W., Maruyama, N., Saggin, F., 2019. Self-Tuning Time-Energy Optimization for the Trajectory Planning of a Wheeled Mobile Robot. J Intell Robot Syst 95, 987-997. DOI:10.1007/s10846-018-0922-5 https://doi.org/10.1007/s10846-018-0922-5 es_ES
dc.description.references Singh Gill, J., Tomaszewski, M., Jia, Y., Pisu, P., Krovl V., 2019. Evaluation of Navigation in Mobile Robots for Long-Term Autonomy in Automotive Manufacturing Environments. SAE Technical Paper 2019-01-0505. DOI:10.4271/2019-01-0505 https://doi.org/10.4271/2019-01-0505 es_ES
dc.description.references Sprunk C. et al. 2016. An Experimental Protocol for Benchmarking Robotic Indoor Navigation. In: Hsieh M., Khatib O., Kumar V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 109. Springer, Cham. DOI:10.1007/978-3-319-23778-7_32 es_ES
dc.description.references https://doi.org/10.1007/978-3-319-23778-7_32 es_ES
dc.description.references Stefek A., Pham T., Krivanek V., Pham K., 2020. Energy Comparison of Controllers Used for a Differential Drive Wheeled Mobile Robot. in IEEE Access, vol. 8, pp. 170915-170927 DOI:10.1109/ACCESS.2020.3023345 https://doi.org/10.1109/ACCESS.2020.3023345 es_ES
dc.description.references Suarez-Rivera, G., Muñoz-Ceballos, N., Vásquez-Carvajal, H., 2021. Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot. Revista Facultad De Ingeniería, 30(55), e12022. DOI:10.19053/01211129.v30.n55.2021.12022 https://doi.org/10.19053/01211129.v30.n55.2021.12022 es_ES
dc.description.references Suarin N.A.S., Pebrianti D., Ann N.Q., Bayuaji L., Syafrullah M., Riyanto I., 2019. Performance Evaluation of PID Controller Parameters Gain Optimization for Wheel Mobile Robot Based on Bat Algorithm and Particle Swarm Optimization. Lecture Notes in Electrical Engineering, vol 538. DOI:10.1007/978-981-13-3708-6_27 https://doi.org/10.1007/978-981-13-3708-6_27 es_ES
dc.description.references Tai J., Phang S., Wong Y., 2020. Optimized autonomous UAV design with obstacle avoidance capability. AIP Conference Proceedings 2233, 020026. DOI:10.1063/5.0001372 https://doi.org/10.1063/5.0001372 es_ES
dc.description.references Urrea, C., Muñoz, J. 2013. Path Tracking of Mobile Robot in Crops. J Intell Robot Syst. DOI: 10.1007/s10846-013-9989-1 es_ES
dc.description.references https://doi.org/10.1007/s10846-013-9989-1 es_ES
dc.description.references Wei, M., Isler, V. 2020. Energy-efficient Path Planning for Ground Robots by and Combining Air and Ground Measurements. In: Proceedings of Machine Learning Research. 100: 766-775. es_ES
dc.description.references Wen, J., Zhang, X., Bi, Q., Pan, Z., Feng, Y., Yuan, J., Fang, Y. 2021. MRPB 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches. 2021 IEEE Int. Conf. on Robotics and Automation (ICRA), 8238-8244. DOI: 10.1109/ICRA48506.2021.9561901 https://doi.org/10.1109/ICRA48506.2021.9561901 es_ES
dc.description.references Xia, F., Shen, W. B., Li, C., Kasimbeg, P., Tchapmi, M., Toshev, A., Martin-Martin, R., Savarese, S., 2020. Interactive Gibson Benchmark: A Benchmark for Interactive Navigation in Cluttered Environments," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 713-720. DOI: 10.1109/LRA.2020.2965078 https://doi.org/10.1109/LRA.2020.2965078 es_ES
dc.description.references Yoon S., Bostelman R., 2019. Analysis of Automatic through Autonomous - Unmanned Ground Vehicles (A-UGVs) Towards Performance Standards, IEEE International Symposium on Robotic and Sensors Environments (ROSE), 2019, pp. 1-7, DOI: 10.1109/ROSE.2019.8790421 https://doi.org/10.1109/ROSE.2019.8790421 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem