- -

Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión

Mostrar el registro completo del ítem

Munoz-Ceballos, ND.; Suarez-Rivera, G. (2022). Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión. Revista Iberoamericana de Automática e Informática industrial. 19(2):132-143. https://doi.org/10.4995/riai.2022.16427

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182819

Ficheros en el ítem

Metadatos del ítem

Título: Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión
Otro titulo: Performance criteria for evaluating mobile robot navigation algorithms: a review
Autor: Munoz-Ceballos, Nelson David Suarez-Rivera, Guiovanny
Fecha difusión:
Resumen:
[ES] En este artículo se presenta una revisión de literatura sobre criterios de desempeño para evaluar la navegación de un robot móvil, los cuales ayudan a comparar cuantitativamente diferentes características, como: el ...[+]


[EN] This paper presents a literature review on performance criteria to evaluate the navigation of a mobile robot, which help to quantitatively compare different characteristics such as the control system, navigation in ...[+]
Palabras clave: Mobile robot , Control system , Trajectory tracking , Performance index , Energy , Navigation algorithm , Robot Móvil , Sistema de Control , Seguimiento de Trayectoria , Índice de Desempeño , Energía , Algoritmo de Navegación
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16427
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16427
Agradecimientos:
Los autores agradecen al Politécnico Colombiano Jaime Isaza Cadavid y la Universidad Nacional de Colombia sede Medellín por el apoyo recibido.
Tipo: Artículo

References

Abdulwahhab, O. W., Abbas, N. H., 2018. Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot. International Journal of Control, Automation and Systems 16(6), 2790-2800. DOI:10.1007/s12555-017-0234-8 https://doi.org/10.1007/s12555-017-0234-8

Algabri, M., Mathkour, H., Ramdane, H., Alsulaiman, M., 2015. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput. Hum. Behav 50, 42-56. DOI: 10.1016/j.chb.2015.03.062 https://doi.org/10.1016/j.chb.2015.03.062

ANSI-American National Standards Institute, 2019. Safety Standard for Driverless, Automatic Guided Industrial Vehicles and Automated Functions of Manned Industrial Vehicles, ANSI/ITSDF B56.5-2019 (Washington, DC: Industrial Truck Standards Development Foundation). [+]
Abdulwahhab, O. W., Abbas, N. H., 2018. Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot. International Journal of Control, Automation and Systems 16(6), 2790-2800. DOI:10.1007/s12555-017-0234-8 https://doi.org/10.1007/s12555-017-0234-8

Algabri, M., Mathkour, H., Ramdane, H., Alsulaiman, M., 2015. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput. Hum. Behav 50, 42-56. DOI: 10.1016/j.chb.2015.03.062 https://doi.org/10.1016/j.chb.2015.03.062

ANSI-American National Standards Institute, 2019. Safety Standard for Driverless, Automatic Guided Industrial Vehicles and Automated Functions of Manned Industrial Vehicles, ANSI/ITSDF B56.5-2019 (Washington, DC: Industrial Truck Standards Development Foundation).

Armah S., Yi S., Lebdeh T. A., 2016. Implementation of autonomous navigation algorithms on two-wheeled ground mobile robot. Amer. J. Eng. Appl. Sci. 78, 36-48. DOI:10.3844/ajeassp.2014.149.164 https://doi.org/10.3844/ajeassp.2014.149.164

ASTM-American Society for Testing and Materials. 2021a. Standard Test Method for Confirming the Docking Performance of A-UGVs (ASTM F3499-21) DOI: 10.1520/F3499-21 https://doi.org/10.1520/F3499-21

ASTM-American Society for Testing and Materials. 2021b. Standard Test Method for Navigation: Defined Area (ASTM F3244-21). DOI:10.1520/F3244-21 https://doi.org/10.1520/F3244-21

Bayón, C., Delgado-Oleas, G., Tagliamonte, N.L., Asseldonk, E. van, Rocon, E.2021. Desarrollo de BenchBalance: un sistema para la evaluación de la capacidad de equilibrio en exoesqueletos robóticos. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021, (pp. 99-103). DOI:10.17979/spudc.9788497498043.099 https://doi.org/10.17979/spudc.9788497498043.099

Bessler, J., Prinsen, E. C., Prange-Lasonder, G. B., Schaake, L., Buurke, J. H. 2018. Assessing Safety and Performance Indicators in Rehabilitation Robotics. In School and symposium on advanced neurorehabilitation SSNR2018. p. 28. Baiona-España.

Bianchi L., Buniak E. A., Ramele R., Santos J. M., 2021. A Control Strategy for a Tethered Follower Robot for Pulmonary Rehabilitation. In: IEEE Transactions on Medical Robotics and Bionics 3(1), pp. 210-219. DOI:10.1109/TMRB.2020.3042281

https://doi.org/10.1109/TMRB.2020.3042281

Bostelman, R., Hong, T., Cheok, G., 2015. Navigation performance evaluation for automatic guided vehicles. In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1-6. DOI:10.1109/TePRA.2015.7219684

https://doi.org/10.1109/TePRA.2015.7219684

Bostelman, R., Hong, T., Marvel, J., 2016. Survey of Research for Performance Measurement of Mobile Manipulators. Journal of Research (NIST JRES), 121. DOI:10.6028/jres.121.015 https://doi.org/10.6028/jres.121.015

Caruntu C., Copot C., Lazar C., Keyser R. D., 2019. Decentralized Predictive Formation Control for Mobile Robots without Communication. In: IEEE 15th Int. Conf. on Control and Automation (ICCA), pp. 555-560. Edinburgh, United Kingdom. DOI:10.1109/ICCA.2019.8899610

https://doi.org/10.1109/ICCA.2019.8899610

Correa F., Gallardo J., Muñoz N., Pérez R., 2016. Estudio comparativo basado en métricas para diferentes arquitecturas de navegación reactiva. Ingeniare Revista chilena de ingeniería 24(1), 46-54. DOI:10.4067/S0718-33052016000100005 https://doi.org/10.4067/S0718-33052016000100005

Domański, P. D., 2020. Control Performance Assessment: Theoretical Analyses and Industrial Practice. Springer, Warsaw. DOI: 10.1007/978-3-030-23593-2 https://doi.org/10.1007/978-3-030-23593-2

Ermacora G., Sartori D., Rovasenda M., Pei L., Yu W., 2020. An Evaluation Framework to Assess Autonomous Navigation Linked to Environment Complexity. In: IEEE Int. Conf. on Mechatronics and Automation (ICMA) pp. 1803-1810. Beijing. China. DOI:10.1109/ICMA49215.2020.9233862 https://doi.org/10.1109/ICMA49215.2020.9233862

Farias G., Garcia G., Montenegro G., Fabregas E., Dormido-Canto S., Dormido S., 2020. Reinforcement Learning for Position Control Problem of a Mobile Robot. IEEE Access 8, 152941-152951. DOI:10.1109/ACCESS.2020.3018026 https://doi.org/10.1109/ACCESS.2020.3018026

Fernandes R., Bessa M., Brandão A., 2017. Performance analysis of positioning controller for mobile robots. In: Latin American Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), pp. 1-5. Curitiba. DOI:10.1109/SBR-LARS-R.2017.8215279

https://doi.org/10.1109/SBR-LARS-R.2017.8215279

Graba, M., Kelouwani, S., Zeghmi, L., Amamou, A., Agbossou, K., Mohammadpour, M., 2020. Investigating the Impact of Energy Source Level on the Self-Guided Vehicle System Performances, in the Industry 4.0 Context. Sustainability 12, no. 20: 8541. DOI:10.3390/su12208541

https://doi.org/10.3390/su12208541

Gridnev A., Dyumin A., Voznenko T., Urvanov G. Chepin E., 2017. The Framework for robotic navigation algorithms evaluation. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 855-859, St. Petersburg, Russia. DOI:10.1109/EIConRus.2017.7910690 https://doi.org/10.1109/EIConRus.2017.7910690

Heiden E., Palmieri L., Bruns L., Arras K. O., Sukhatme G. S. and Koenig S. 2021. Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots. in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4536-4543, July 2021, DOI: 10.1109/LRA.2021.3068913

https://doi.org/10.1109/LRA.2021.3068913

Heikkinen J. E., Minav T. and Serykh E. V., 2018. Mobile robot qualification metrics. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 878-881, Russia. DOI:10.1109/EIConRus.2018.8317228

https://doi.org/10.1109/EIConRus.2018.8317228

Ho D., Ben Chehida K., Miramond B. and Auguin M., 2018. Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots. In: Second IEEE International Conference on Robotic Computing (IRC), pp. 270-273. DOI:10.1109/IRC.2018.00057

https://doi.org/10.1109/IRC.2018.00057

Hrubý D., Marko D., Olejár M., Cviklovič V., Horňák D. 2021. Comparison of Control Algorithms by Simulating Power Consumption of Differential Drive Mobile Robot Motion Control in Vineyard Row. Acta Technologica Agriculturae,24(4) 195-201. DOI:10.2478/ata-2021-0032

https://doi.org/10.2478/ata-2021-0032

IEEE Institute of Electrical and Electronics Engineers, 2015. 1873-2015 IEEE Standard for Robot Map Data Representation for Navigation. pp.1-54. DOI: 10.1109/IEEESTD.2015.7300355 https://doi.org/10.1109/IEEESTD.2015.7300355

ISO-International Organization for Standardization. 2016. Robotics - Performance criteria and related test methods for service robots - Part 1: Locomotion for wheeled robots (ISO 18646-1:2016). https://www.iso.org/standard/63127.html

ISO-International Organization for Standardization. 2019. Robotics - Performance criteria and related test methods for service robots - Part 2: Navigation (ISO 18646-2:2019). https://www.iso.org/standard/69057.html

Lambert P., Lapierre L. and Crestani D., 2019. An Approach for Fault Tolerant and Performance Guarantee Autonomous Robotic Mission. NASA/ESA Conference on Adaptive Hardware and Systems (AHS). pp. 87-94. DOI:10.1109/AHS.2019.00009 https://doi.org/10.1109/AHS.2019.00009

Madrigal S., Muñoz N. 2019. Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117-137. DOI: 10.33571/rpolitec.v15n28a11 https://doi.org/10.33571/rpolitec.v15n28a11

Majumdar A., Pavone M., 2020. How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics. In: Robotics Research. Springer Proceedings in Advanced Robotics. DOI:10.1007/978-3-030-28619-4_10 https://doi.org/10.1007/978-3-030-28619-4_10

Maldonado-Romo, J., Aldape-Pérez, M., Rodríguez-Molina, A., 2021. Path Planning Generator with Metadata through a Domain Change by GAN between Physical and Virtual Environments. In: Sensors 21, no22: 7667. DOI: 10.3390/s21227667 https://doi.org/10.3390/s21227667

Martins, O., Adekunle, A., Adejuyigbe, S., Adeyemi, O., Arowolo, M., 2020. Wheeled Mobile Robot Path Planning and Path Tracking Controller Algorithms: A Review. Journal of Engineering Science and Technology Review 13(3), 152 - 164. DOI:10.25103/jestr.133.17

https://doi.org/10.25103/jestr.133.17

Marvel, J. A., Bostelman, R., 2014. A Cross-Domain Survey of Metrics for Modelling and Evaluating Collisions. International Journal of Advanced Robotic Systems. DOI:10.5772/58846 https://doi.org/10.5772/58846

Mayoral, J. C., Grimstad, L., From, P. J., Cielniak G., 2021. Integration of a Human-aware Risk-based Braking System into an Open-Field Mobile Robot. In: IEEE Int. Conference on Robotics and Automation (ICRA). pp. 2435-2442, DOI: 10.1109/ICRA48506.2021.9561522

https://doi.org/10.1109/ICRA48506.2021.9561522

McGuire K.N., de Croon G.C.H.E., Tuyls K., 2019. A comparative study of bug algorithms for robot navigation, Robotics and Autonomous Systems 121, 103261. DOI: 10.1016/j.robot.2019.103261 https://doi.org/10.1016/j.robot.2019.103261

Mohammadpour M., Zeghmi L., Kelouwani S., Gaudreau M., Amamou A., Graba M., 2021. An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots. Energies 2021, 14, 3517. DOI: 10.3390/en14123517 https://doi.org/10.3390/en14123517

Moreno, H., Saltarén, R., Carrera, I., Puglisi, L., Aracil, R., 2012. Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática industrial, 9(2), 111-122. DOI: 10.1016/j.riai.2012.02.005

https://doi.org/10.1016/j.riai.2012.02.005

Munoz, N. D., Valencia, J., Alvarez, A., 2014. Simulation and Assessment Educational Framework for Mobile Robot Algorithms. J. Autom. Mob. Robotics Intell. Syst., 8, 53-59. DOI:10.14313/JAMRIS_1-2014/7 https://doi.org/10.14313/JAMRIS_1-2014/7

Niemueller T., Lakemeyer G., Srinivasa S., 2012. A generic robot database and its application in fault analysis and performance evaluation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 364-369, DOI: 10.1109/IROS.2012.6385940

https://doi.org/10.1109/IROS.2012.6385940

Norton A., Gavriel P., Yanco H., 2019. A Standard Test Method for Evaluating Navigation and Obstacle Avoidance Capabilities of AGVs and AMRs. Smart and Sustainable Manufacturing Systems 3, (2). 106-126. DOI:10.1520/SSMS20190028 https://doi.org/10.1520/SSMS20190028

Norton, A., Saretsky, A., Yanco, H., 2020. Developing Metrics and Evaluation Methods for Assessing Artificial Intelligence Enabled Robots in Manufacturing. In: Proceedings from the AAAI Spring Symposium on AI and Manufacturing.

Pérez J., Fornas D, Marín R., Sanz P. 2018. UWSim, un Simulador Submarino Conectado a la Nube como Herramienta Educacional. Revista Iberoamericana de Automática e Informática Industrial 15, 70-78. DOI:10.4995/riai.2017.8827 https://doi.org/10.4995/riai.2017.8827

Pérez-González A, Benítez-Montoya N, Jaramillo-Duque A, Cano-Quintero JB. 2021. Coverage Path Planning with Semantic Segmentation for UAV in PV Plants. Applied Sciences. 11(24):12093. DOI:10.3390/app112412093 https://doi.org/10.3390/app112412093

Ponce H., Moya-Albor, E., Brieva, J., 2018. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies. In: Computational Intelligence and Neuroscience 2018, 16. DOI:10.1155/2018/4189150 https://doi.org/10.1155/2018/4189150

Raiesdana, S., 2021. A Hybrid Method for Industrial Robot Navigation. Journal of Optimization in Industrial Engineering 14(1), 133-148. DOI:10.22094/joie.2020.1863337.1629

Ren Y., Wang J., Zheng X., Zhao Q., Ma J., Zhao L., 2020. Research on multidimensional evaluation of tracking control strategies for self-driving vehicles. Advances in Mechanical Engineering. DOI:10.1177/1687814020912968 https://doi.org/10.1177/1687814020912968

Rivera, R. G., Alvarado, R. G., Martínez-Rocamora, A., Auat Cheein, F., 2020. A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry. Sustainability 12(11), 4378. DOI:10.3390/su12114378 https://doi.org/10.3390/su12114378

Rokonuzzaman, M., Mohajer, N., Nahavandi, S., Mohamed, S., 2021. Review and performance evaluation of path tracking controllers of autonomous vehicles. IET Intell Transp Syst. 15: 646- 670. DOI:10.1049/itr2.12051 https://doi.org/10.1049/itr2.12051

Schreckenghost D. L., Milam T., Fong T., 2016. Techniques and tools for summarizing performance of robots operating remotely. In: 14th int. conf. on space operations. p. 2310. DOI: 10.2514/6.2016-2310 https://doi.org/10.2514/6.2016-2310

Serralheiro, W., Maruyama, N., Saggin, F., 2019. Self-Tuning Time-Energy Optimization for the Trajectory Planning of a Wheeled Mobile Robot. J Intell Robot Syst 95, 987-997. DOI:10.1007/s10846-018-0922-5 https://doi.org/10.1007/s10846-018-0922-5

Singh Gill, J., Tomaszewski, M., Jia, Y., Pisu, P., Krovl V., 2019. Evaluation of Navigation in Mobile Robots for Long-Term Autonomy in Automotive Manufacturing Environments. SAE Technical Paper 2019-01-0505. DOI:10.4271/2019-01-0505 https://doi.org/10.4271/2019-01-0505

Sprunk C. et al. 2016. An Experimental Protocol for Benchmarking Robotic Indoor Navigation. In: Hsieh M., Khatib O., Kumar V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 109. Springer, Cham. DOI:10.1007/978-3-319-23778-7_32

https://doi.org/10.1007/978-3-319-23778-7_32

Stefek A., Pham T., Krivanek V., Pham K., 2020. Energy Comparison of Controllers Used for a Differential Drive Wheeled Mobile Robot. in IEEE Access, vol. 8, pp. 170915-170927 DOI:10.1109/ACCESS.2020.3023345 https://doi.org/10.1109/ACCESS.2020.3023345

Suarez-Rivera, G., Muñoz-Ceballos, N., Vásquez-Carvajal, H., 2021. Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot. Revista Facultad De Ingeniería, 30(55), e12022. DOI:10.19053/01211129.v30.n55.2021.12022 https://doi.org/10.19053/01211129.v30.n55.2021.12022

Suarin N.A.S., Pebrianti D., Ann N.Q., Bayuaji L., Syafrullah M., Riyanto I., 2019. Performance Evaluation of PID Controller Parameters Gain Optimization for Wheel Mobile Robot Based on Bat Algorithm and Particle Swarm Optimization. Lecture Notes in Electrical Engineering, vol 538. DOI:10.1007/978-981-13-3708-6_27 https://doi.org/10.1007/978-981-13-3708-6_27

Tai J., Phang S., Wong Y., 2020. Optimized autonomous UAV design with obstacle avoidance capability. AIP Conference Proceedings 2233, 020026. DOI:10.1063/5.0001372 https://doi.org/10.1063/5.0001372

Urrea, C., Muñoz, J. 2013. Path Tracking of Mobile Robot in Crops. J Intell Robot Syst. DOI: 10.1007/s10846-013-9989-1

https://doi.org/10.1007/s10846-013-9989-1

Wei, M., Isler, V. 2020. Energy-efficient Path Planning for Ground Robots by and Combining Air and Ground Measurements. In: Proceedings of Machine Learning Research. 100: 766-775.

Wen, J., Zhang, X., Bi, Q., Pan, Z., Feng, Y., Yuan, J., Fang, Y. 2021. MRPB 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches. 2021 IEEE Int. Conf. on Robotics and Automation (ICRA), 8238-8244. DOI: 10.1109/ICRA48506.2021.9561901 https://doi.org/10.1109/ICRA48506.2021.9561901

Xia, F., Shen, W. B., Li, C., Kasimbeg, P., Tchapmi, M., Toshev, A., Martin-Martin, R., Savarese, S., 2020. Interactive Gibson Benchmark: A Benchmark for Interactive Navigation in Cluttered Environments," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 713-720. DOI: 10.1109/LRA.2020.2965078 https://doi.org/10.1109/LRA.2020.2965078

Yoon S., Bostelman R., 2019. Analysis of Automatic through Autonomous - Unmanned Ground Vehicles (A-UGVs) Towards Performance Standards, IEEE International Symposium on Robotic and Sensors Environments (ROSE), 2019, pp. 1-7, DOI: 10.1109/ROSE.2019.8790421 https://doi.org/10.1109/ROSE.2019.8790421

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem